## MOSFET – Power, Single, N-Channel, SOT-23, 2.4 x 2.9 x 1.0 mm

## 20 V, 3.6 A

#### Features

- Advanced Trench Technology
- Ultra-Low R<sub>DS(on)</sub> in SOT-23 Package
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

#### Applications

- Power Load Switch
- Power Management

#### **MAXIMUM RATINGS** (T<sub>J</sub> = $25^{\circ}$ C unless otherwise stated)

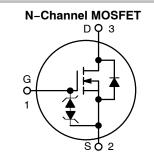
| Parame                                                              | Symbol                                  | Value               | Unit                                 |               |    |  |
|---------------------------------------------------------------------|-----------------------------------------|---------------------|--------------------------------------|---------------|----|--|
| Drain-to-Source Voltage                                             |                                         |                     | V <sub>DSS</sub>                     | 20            | V  |  |
| Gate-to-Source Voltage                                              |                                         |                     | V <sub>GS</sub>                      | ±8            | V  |  |
| Continuous Drain Current Steady $T_A = 25^{\circ}C$                 |                                         |                     | ۱ <sub>D</sub>                       | 3.6           | А  |  |
| (Note 1)                                                            | State                                   | $T_A = 85^{\circ}C$ |                                      | 2.6           |    |  |
|                                                                     | $t \le 5 \text{ s}$ $T_A = 25^{\circ}C$ |                     |                                      | 6.5           |    |  |
| Power Dissipation<br>(Note 1)                                       | Steady<br>State                         | $T_A = 25^{\circ}C$ | P <sub>D</sub>                       | 0.47          | W  |  |
|                                                                     | t ≤ 5 s                                 |                     |                                      | 1.56          |    |  |
| Pulsed Drain Current                                                | t <sub>p</sub> = 10 μs                  |                     | I <sub>DM</sub>                      | 13.2          | А  |  |
| Operating Junction and Storage Temperature                          |                                         |                     | T <sub>J</sub> ,<br>T <sub>STG</sub> | –55 to<br>150 | °C |  |
| Source Current (Body Diode) (Note 2)                                |                                         |                     | ۱ <sub>S</sub>                       | 2.2           | А  |  |
| Lead Temperature for Soldering Purposes (1/8 in from case for 10 s) |                                         |                     | ΤL                                   | 260           | °C |  |

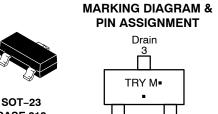
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

### THERMAL RESISTANCE RATINGS

| Parameter                                   | Symbol          | Мах | Unit |
|---------------------------------------------|-----------------|-----|------|
| Junction-to-Ambient - Steady State (Note 1) | $R_{\theta JA}$ | 264 | °C/W |
| Junction-to-Ambient – t $\leq$ 5 s (Note 1) | $R_{\theta JA}$ | 80  |      |

1. Surface-mounted on FR4 board using 1 in sq. pad size (Cu area = 1.127 in sq. [1 oz] including traces).


2. Pulse Test: pulse width  $\leq$  300 ms, duty cycle  $\leq$  2%.




## **ON Semiconductor®**

#### www.onsemi.com

| V <sub>(BR)DSS</sub> | R <sub>DS(on)</sub> Max | I <sub>D</sub> MAX |
|----------------------|-------------------------|--------------------|
|                      | 24 mΩ @ 4.5 V           |                    |
| 20 V                 | 26 mΩ @ 3.7 V           |                    |
|                      | 29 mΩ @ 3.3 V           | 3.6 A              |
|                      | 33 mΩ @ 2.5 V           |                    |
|                      | 55 mΩ @ 1.8 V           |                    |





2

Source

CASE 318 STYLE 21 1 Gate

.

TRY = Specific Device Code

M = Date Code\*

= Pb-Free Package

(Note: Microdot may be in either location)

\*Date Code orientation may vary depending upon manufacturing location.

#### **ORDERING INFORMATION**

| Device       | Package             | Shipping <sup>†</sup>   |
|--------------|---------------------|-------------------------|
| NTR3C21NZT1G | SOT-23<br>(Pb-Free) | 3000 / Tape &<br>Reel   |
| NTR3C21NZT3G | SOT-23<br>(Pb-Free) | 10,000 / Tape &<br>Reel |

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

#### ELECTRICAL CHARACTERISTICS (T1 = 25°C unless otherwise specified)

| Parameter                                                    | Symbol                               | Test Condition                                                                                                                              |                      | Min  | Тур  | Max | Unit  |
|--------------------------------------------------------------|--------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|----------------------|------|------|-----|-------|
| OFF CHARACTERISTICS                                          |                                      |                                                                                                                                             |                      |      |      |     |       |
| Drain-to-Source Breakdown Voltage                            | V <sub>(BR)DSS</sub>                 | $V_{GS}$ = 0 V, $I_D$ = 250 $\mu$ A                                                                                                         |                      | 20   |      |     | V     |
| Drain-to-Source Breakdown Voltage<br>Temperature Coefficient | V <sub>(BR)DSS</sub> /T <sub>J</sub> | $I_D = 250 \ \mu\text{A}$ , ref to $25^{\circ}\text{C}$                                                                                     |                      |      | 21.6 |     | mV/°C |
| Zero Gate Voltage Drain Current                              | I <sub>DSS</sub>                     | $ \begin{array}{c} V_{GS} = 0 \ V, \\ V_{DS} = 20 \ V \end{array} \begin{array}{c} T_{J} = 25^{\circ}C \\ T_{J} = 85^{\circ}C \end{array} $ |                      |      | 1.0  | μΑ  |       |
|                                                              |                                      |                                                                                                                                             | $T_J = 85^{\circ}C$  |      |      | 5.0 | μA    |
| Gate-to-Source Leakage Current                               | I <sub>GSS</sub>                     | V <sub>DS</sub> = 0 V, V <sub>GS</sub>                                                                                                      | = ±8 V               |      |      | ±10 | μΑ    |
| ON CHARACTERISTICS (Note 3)                                  |                                      |                                                                                                                                             |                      |      |      |     |       |
| Gate Threshold Voltage                                       | V <sub>GS(TH)</sub>                  | $V_{GS} = V_{DS}, I_D = 250 \ \mu A$                                                                                                        |                      | 0.45 |      | 1.0 | V     |
| Negative Threshold Temperature<br>Coefficient                | V <sub>GS(TH)</sub> /T <sub>J</sub>  |                                                                                                                                             |                      |      | 2.7  |     | mV/°C |
| Drain-to-Source On Resistance                                | R <sub>DS(on)</sub>                  | V <sub>GS</sub> = 4.5 V                                                                                                                     | l <sub>D</sub> = 5 A |      | 18   | 24  | mΩ    |
|                                                              |                                      | V <sub>GS</sub> = 3.7 V                                                                                                                     | I <sub>D</sub> = 4 A |      | 18.5 | 26  |       |
|                                                              |                                      | V <sub>GS</sub> = 3.3 V                                                                                                                     | I <sub>D</sub> = 3 A |      | 19   | 29  |       |
|                                                              |                                      | V <sub>GS</sub> = 2.5 V                                                                                                                     | I <sub>D</sub> = 2 A |      | 20   | 33  |       |
|                                                              |                                      | V <sub>GS</sub> = 1.8 V                                                                                                                     | l <sub>D</sub> = 1 A |      | 25   | 55  |       |
| Forward Transconductance                                     | 9FS                                  | V <sub>DS</sub> = 5 V, I <sub>D</sub> = 3 A                                                                                                 |                      |      | 20   |     | S     |
| CHARGES AND CAPACITANCES                                     |                                      |                                                                                                                                             |                      |      |      |     |       |
| Input Capacitance                                            | C <sub>iss</sub>                     |                                                                                                                                             |                      |      | 1540 |     | pF    |
| Output Capacitance                                           | C <sub>oss</sub>                     | V <sub>GS</sub> = 0 V, f = 1.0 MHz, V <sub>DS</sub> = 16 V                                                                                  |                      |      | 105  |     |       |
| Reverse Transfer Capacitance                                 | C <sub>rss</sub>                     |                                                                                                                                             |                      |      | 86   |     |       |
| Total Gate Charge                                            | Q <sub>G(TOT)</sub>                  |                                                                                                                                             |                      |      | 17.8 |     | nC    |

| Rise Time           | t <sub>r</sub>      | V <sub>GS</sub> = 4.5 V, V <sub>DS</sub> = 16 V, |
|---------------------|---------------------|--------------------------------------------------|
| Turn-Off Delay Time | t <sub>d(off)</sub> | $I_D = 5 \text{ A}, \text{ R}_G = 6.0 \Omega$    |
| Fall Time           | t <sub>f</sub>      |                                                  |

Q<sub>G(TH)</sub>

 $Q_{GS}$ 

 $Q_{GD}$ 

t<sub>d(on)</sub>

#### **DRAIN-SOURCE DIODE CHARACTERISTICS**

SWITCHING CHARACTERISTICS (Note 4)

Threshold Gate Charge

Gate-to-Source Charge

Gate-to-Drain Charge

Turn-On Delay Time

| Forward Diode Voltage | $V_{SD}$ | V <sub>GS</sub> = 0 V, | $T_J = 25^{\circ}C$    | 0.7  | 1.0 | V |
|-----------------------|----------|------------------------|------------------------|------|-----|---|
|                       |          | I <sub>S</sub> = 2.0 A | T <sub>J</sub> = 125°C | 0.56 |     |   |

 $V_{GS}$  = 4.5 V,  $V_{DS}$  = 16 V,  $I_{D}$  = 5 A

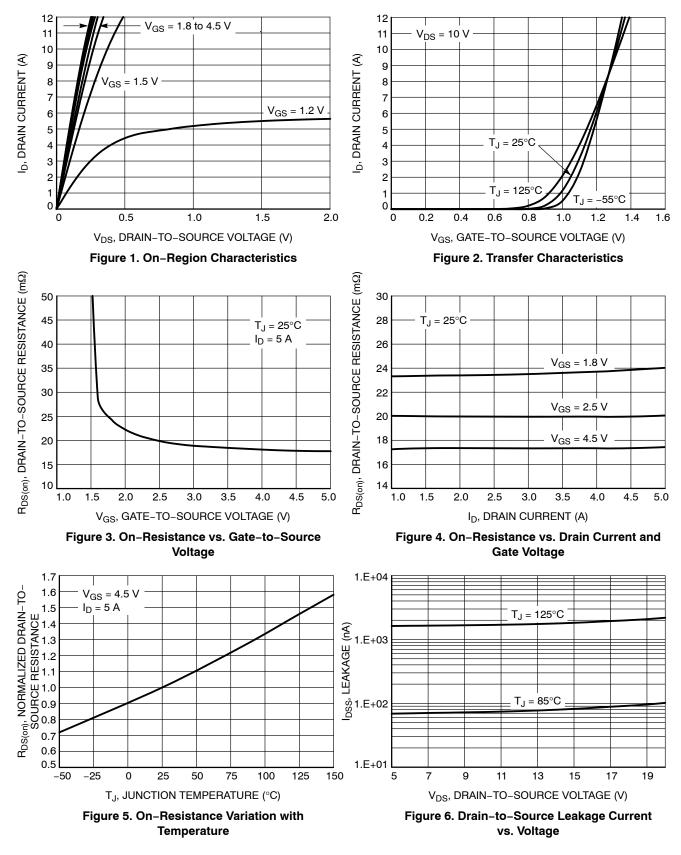
2.1

3.0

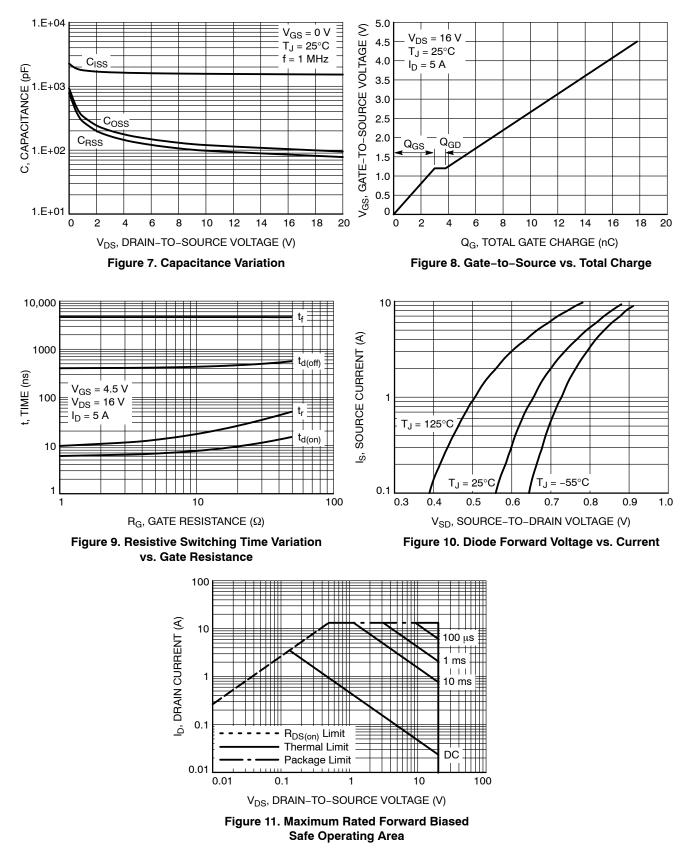
0.8

7.0

14


420 4670 ns

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.


3. Pulse Test: pulse width  $\leq$  300 ms, duty cycle  $\leq$  2%.

4. Switching characteristics are independent of operating junction temperatures.

### **TYPICAL CHARACTERISTICS**



#### **TYPICAL CHARACTERISTICS**



### **TYPICAL CHARACTERISTICS**

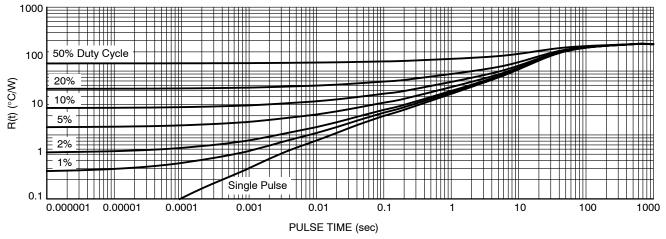
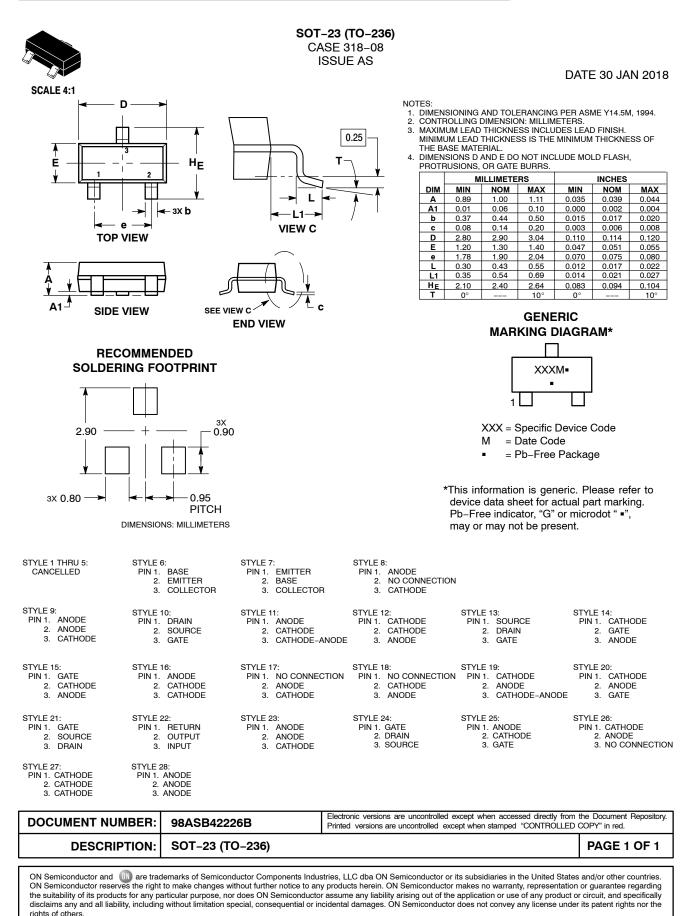




Figure 12. FET Thermal Response





© Semiconductor Components Industries, LLC, 2019

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor date sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use a a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor houteds for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries

#### PUBLICATION ORDERING INFORMATION

#### LITERATURE FULFILLMENT:

#### TECHNICAL SUPPORT

ON Semiconductor Website: www.onsemi.com

Email Requests to: orderlit@onsemi.com

North American Technical Support: Voice Mail: 1 800–282–9855 Toll Free USA/Canada Phone: 011 421 33 790 2910 Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative