Zener Voltage Regulators
 300 mW SOD-323 Surface Mount
 Tight Tolerance Portfolio
 MM3ZxxxST1G Series, SZMM3ZxxxST1G Series

This series of Zener diodes is packaged in a SOD-323 surface mount package that has a power dissipation of 300 mW . They are designed to provide voltage regulation protection and are especially attractive in situations where space is at a premium. They are well suited for applications such as cellular phones, hand-held portables, and high density PC boards.

Specification Features

- Standard Zener Breakdown Voltage Range - 3.3 V to 36 V
- Steady State Power Rating of 300 mW
- Small Body Outline Dimensions:

$$
-0.067^{\prime \prime} \times 0.049^{\prime \prime}(1.7 \mathrm{~mm} \times 1.25 \mathrm{~mm})
$$

- Low Body Height: 0.035" (0.9 mm)
- Package Weight: $4.507 \mathrm{mg} / \mathrm{unit}$
- ESD Rating of Class 3 (> 16 kV) per Human Body Model
- Tight Tolerance V_{Z}
- SZ Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable
- These Devices are $\mathrm{Pb}-$ Free, Halogen Free/BFR Free and are RoHS Compliant*

Mechanical Characteristics:

CASE: Void-free, transfer-molded plastic
FINISH: All external surfaces are corrosion resistant
MAXIMUM CASE TEMPERATURE FOR SOLDERING PURPOSES:
$260^{\circ} \mathrm{C}$ for 10 Seconds
LEADS: Plated with $\mathrm{Pb}-\mathrm{Sn}$ or Sn only ($\mathrm{Pb}-$ Free)
POLARITY: Cathode indicated by polarity band
FLAMMABILITY RATING: UL 94 V-0
MOUNTING POSITION: Any

MARKING DIAGRAM

$$
\begin{aligned}
& \mathrm{XX}=\text { Specific Device Code } \\
& \mathrm{M}=\text { Date Code* } \\
& \cdot=\text { Pb-Free Package }
\end{aligned}
$$

(Note: Microdot may be in either location)
*Date Code orientation may vary depending upon manufacturing location.

ORDERING INFORMATION

Device	Package	Shipping †
MM3ZxxxST1G	SOD-323 (Pb-Free)	$3,000 /$ Tape \& Reel
SZMM3ZxxxST1G	SOD-323 (Pb-Free)	$3,000 /$ Tape \& Reel
MM3ZxxxST3G	SOD-323 (Pb-Free)	$10,000 /$ Tape \& Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

DEVICE MARKING INFORMATION
See specific marking information in the device marking column of the Electrical Characteristics table on page 3 of this data sheet.

MAXIMUM RATINGS

Rating	Symbol	Max	Unit
Total Device Dissipation FR-4 Board,	P_{D}		
(Note 1) @ $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		300	mW
Derate above $25^{\circ} \mathrm{C}$		2.4	$\mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Thermal Resistance from Junction-to-Ambient	$\mathrm{R}_{\text {өJA }}$	416	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Junction and Storage Temperature Range	$\mathrm{T}_{\mathrm{J}}, \mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. FR-4 printed circuit board, single-sided copper, mounting pad $1 \mathrm{~cm}^{2}$.

ELECTRICAL CHARACTERISTICS

($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted,
$\mathrm{V}_{\mathrm{F}}=0.9 \mathrm{~V}$ Max. @ $\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$ for all types)

Symbol	Parameter
V_{Z}	Reverse Zener Voltage @ I_{ZT}
I_{ZT}	Reverse Current
Z_{ZT}	Maximum Zener Impedance @ I_{ZT}
I_{ZK}	Reverse Current
Z_{ZK}	Maximum Zener Impedance @ I_{ZK}
I_{R}	Reverse Leakage Current @ V_{R}
V_{R}	Reverse Voltage
I_{F}	Forward Current
V_{F}	Forward Voltage @ I_{F}
$\Theta \mathrm{V}_{\mathrm{Z}}$	Maximum Temperature Coefficient of V_{Z}
C	Max. Capacitance @ $\mathrm{V}_{\mathrm{R}}=0$ and $\mathrm{f}=1 \mathrm{MHz}$

MM3ZxxxST1G Series, SZMM3ZxxxST1G Series

ELECTRICAL CHARACTERISTICS ($\mathrm{V}_{\mathrm{F}}=0.9 \mathrm{Max} @ \mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$ for all types)

Device*	Device Marking	Test Current Izt mA	Zener Voltage VZ		$\begin{gathered} Z_{z K} I_{Z} \\ =0.5 \\ \operatorname{mA} \Omega \\ \operatorname{Max} \end{gathered}$	$\begin{gathered} Z_{\mathrm{ZT}} \\ \mathrm{Iz}_{\mathrm{Z}}=\mathrm{IZT} \\ @ 10 \% \\ \operatorname{Mod} \Omega \\ \operatorname{Max} \end{gathered}$	$\begin{gathered} \text { Max } \\ \text { IR @ VR } \end{gathered}$		$\mathrm{d}_{\mathrm{Vz}} / \mathrm{dt}(\mathrm{mV} / \mathrm{k})$ @ $\mathrm{I}_{\mathrm{ZT} 1}=5 \mathrm{~mA}$		$\begin{gathered} \text { C pF Max @ } \\ V_{R}=0 \\ f=1 \text { MHz } \end{gathered}$
			Min	Max			$\mu \mathrm{A}$	V	Min	Max	
MM3Z2V4ST1G	T2	5.0	2.29	2.51	1000	100	50	1.0	-3.5	0	450
MM3Z2V7ST1G	T3	5.0	2.59	2.81	1000	100	20	1.0	-3.5	0	450
MM3Z3V0ST1G	T4	5.0	2.90	3.11	1000	100	10	1.0	-3.5	0	450
MM3Z3V3ST1G	T5	5.0	3.32	3.53	1000	95	5.0	1.0	-3.5	0	450
MM3Z3V6ST1G	T6	5.0	3.49	3.71	1000	90	5.0	1.0	-3.5	0	450
MM3Z3V9ST1G	T7	5.0	3.89	4.16	1000	90	3.0	1.0	-3.5	-2.5	450
MM3Z4V3ST1G	T8	5.0	4.17	4.43	1000	90	3.0	1.0	-3.5	0	450
MM3Z4V7ST1G	T9	5.0	4.55	4.75	800	80	3.0	2.0	-3.5	0.2	260
MM3Z5V1ST1G	TA	5.0	4.98	5.2	500	60	2.0	2.0	-2.7	1.2	225
MM3Z5V6ST1G	TC	5.0	5.49	5.73	200	40	1.0	2.0	-2.0	2.5	200
MM3Z6V2ST1G	TE	5.0	6.06	6.33	100	10	3.0	4.0	0.4	3.7	185
MM3Z6V8ST1G	TF	5.0	6.65	6.93	160	15	2.0	4.0	1.2	4.5	155
MM3Z7V5ST1G	TG	5.0	7.28	7.6	160	15	1.0	5.0	2.5	5.3	140
MM3Z8V2ST1G	TH	5.0	8.02	8.36	160	15	0.7	5.0	3.2	6.2	135
MM3Z9V1ST1G	TK	5.0	8.85	9.23	160	15	0.5	6.0	3.8	7.0	130
MM3Z10VST1G	WB	5.0	9.80	10.20	160	15	0.5	6.0	4.5	8.0	130
MM3Z11VST1G	WC	5.0	10.78	11.22	160	20	0.1	8.0	5.4	9.0	130
MM3Z12VST1G	TN	5.0	11.74	12.24	80	25	0.1	8.0	6.0	10	130
MM3Z13VST1G	TQ	5.0	12.91	13.49	160	30	0.1	8.0	7.0	11	120
MM3Z15VST1G	TP	5.0	14.34	14.98	80	40	0.1	11	8.8	12.7	130
MM3Z16VST1G	TU	5.0	15.85	16.51	80	40	0.05	11.2	10.4	14	105
MM3Z18VST1G	TW	5.0	17.56	18.35	80	45	0.05	12.6	12.4	16	100
MM3Z20VST1G	U8	5.0	19.48	20.46	100	55	0.05	14.0	14.4	18	85
MM3Z22VST1G	WP	5.0	21.54	22.47	100	55	0.05	15.4	16.4	20	85
MM3Z24VST1G	WT	5.0	23.72	24.78	120	70	0.05	16.8	18.4	22	80
MM3Z27VST1G	WQ	5.0	26.19	27.53	300	80	0.05	18.9	21.4	25.3	70
MM3Z30VST1G	WV	5.0	29.19	30.69	300	80	0.05	21.0	24.4	29.4	70
MM3Z33VST1G	WR	5.0	32.15	33.79	300	80	0.05	23.2	27.4	33.4	70
MM3Z36VST1G	WU	5.0	35.07	36.87	500	90	0.05	25.2	30.4	37.4	70
MM3Z39VST1G	WN	2.0	38.22	39.78	500	130	0.05	27.3	33.4	41.2	45

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.
*Include SZ-prefix devices where applicable.

MM3ZxxxST1G Series, SZMM3ZxxxST1G Series

TYPICAL CHARACTERISTICS

Figure 3. Typical Capacitance

Figure 5. Zener Voltage versus Zener Current (V_{Z} Up to 9 V)

Figure 6. Steady State Power Derating

CASE 477-02

ISSUE H
DATE 13 MAR 2007

SCALE 4:1

SOLDERING FOOTPRINT*

*For additional information on our Pb -Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETERS
3. LEAD THICKNESS SPECIFIED PER L/F DRAWING WITH SOLDER PLATING.
4. DIMENSIONS A AND B DO NOT INCLUDE MOLD

FIMENSIONS A AND B DO NOT INCLUDE
5. DIMENSION L IS MEASURED FROM END OF RADIUS

	MILLIMETERS			INCHES		
DIM	MIN	NOM	MAX	MIN	NOM	MAX
A	0.80	0.90	1.00	0.031	0.035	0.040
A1	0.00	0.05	0.10	0.000	0.002	0.004
A3	0.15 REF			0.006 REF		
b	0.25	0.32	0.4	0.010	0.012	0.016
C	0.089	0.12	0.177	0.003	0.005	0.007
D	1.60	1.70	1.80	0.062	0.066	0.070
E	1.15	1.25	1.35	0.045	0.049	0.053
L	0.08			0.003		
H $_{\text {E }}$	2.30	2.50	2.70	0.090	0.098	0.105

GENERIC MARKING DIAGRAM*

> XX $=$ Specific Device Code $M=$ Date Code
*This information is generic. Please refer to device data sheet for actual part marking. $\mathrm{Pb}-\mathrm{Free}$ indicator, " G " or microdot " $\mathrm{\bullet}$ ", may or may not be present.

STYLE 1:
PIN 1. CATHODE (POLARITY BAND) 2. ANODE

STYLE 2 : NO POLARITY
XX = Specific Device Code
$M=$ Date Code
*This information is generic. Please refer to
device data sheet for actual part marking.
Pb-Free indicator, "G" or microdot " "",
may or may not be present.
STYLE 1:
PIN 1. CATHODE (POLARITY BAND) STYLE 2: NO POLARITY
2. ANODE

DOCUMENT NUMBER:	98ASB17533C	Electronic versions are uncontrolled except when accessed directly from the Document Repository Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red
DESCRIPTION:	SOD-323	PAGE 1 OF 1

ON Semiconductor and (ON) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.
onsemi, OnSeMi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com
onsemi Website: www.onsemi.com

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery \& Lifecycle Information:

