# **MOSFET** – N-Channel, Small Signal, SOT-23

60 V, 115 mA

# 2N7002L, 2V7002L

### Features

- 2V Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC–Q101 Qualified and PPAP Capable (2V7002L)
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant



# **ON Semiconductor®**

## www.onsemi.com

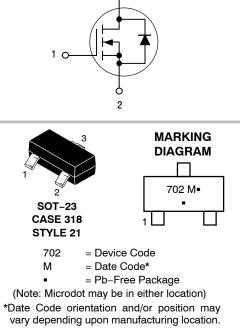
| V <sub>(BR)DSS</sub> | R <sub>DS(on)</sub> MAX | I <sub>D</sub> MAX |
|----------------------|-------------------------|--------------------|
| 60 V                 | 7.5 Ω @ 10 V,<br>500 mA | 115 mA             |

N-Channel

3

## MAXIMUM RATINGS

| Rating                                                                                                               | Symbol                                              | Value               | Unit       |
|----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|---------------------|------------|
| Drain-Source Voltage                                                                                                 | V <sub>DSS</sub>                                    | 60                  | Vdc        |
| Drain-Gate Voltage ( $R_{GS}$ = 1.0 M $\Omega$ )                                                                     | V <sub>DGR</sub>                                    | 60                  | Vdc        |
| Drain Current<br>– Continuous T <sub>C</sub> = 25°C (Note 1)<br>T <sub>C</sub> = 100°C (Note 1)<br>– Pulsed (Note 2) | I <sub>D</sub><br>I <sub>D</sub><br>I <sub>DM</sub> | ±115<br>±75<br>±800 | mAdc       |
| Gate–Source Voltage<br>– Continuous<br>– Non–repetitive (t <sub>p</sub> ≤ 50 μs)                                     | V <sub>GS</sub><br>V <sub>GSM</sub>                 | ±20<br>±40          | Vdc<br>Vpk |


### THERMAL CHARACTERISTICS

| Characteristic                                                                                                                                | Symbol                             | Мах               | Unit                |
|-----------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|-------------------|---------------------|
| Total Device Dissipation FR–5 Board<br>(Note 3) T <sub>A</sub> = 25°C<br>Derate above 25°C<br>Thermal Resistance, Junction–to–Ambient         | P <sub>D</sub><br>R <sub>θJA</sub> | 225<br>1.8<br>556 | mW<br>mW/°C<br>°C/W |
| Total Device Dissipation<br>(Note 4) Alumina Substrate, T <sub>A</sub> = 25°C<br>Derate above 25°C<br>Thermal Resistance, Junction-to-Ambient | P <sub>D</sub><br>R <sub>θJA</sub> | 300<br>2.4<br>417 | mW<br>mW/°C<br>°C/W |
| Junction and Storage Temperature                                                                                                              | T <sub>J</sub> , T <sub>stg</sub>  | –55 to<br>+150    | °C                  |

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

 The Power Dissipation of the package may result in a lower continuous drain current.

- 2. Pulse Test: Pulse Width  $\leq$  300  $\mu$ s, Duty Cycle  $\leq$  2.0%.
- 3. FR-5 = 1.0 x 0.75 x 0.062 in.
- 4. Alumina = 0.4 x 0.3 x 0.025 in 99.5% alumina.



### **ORDERING INFORMATION**

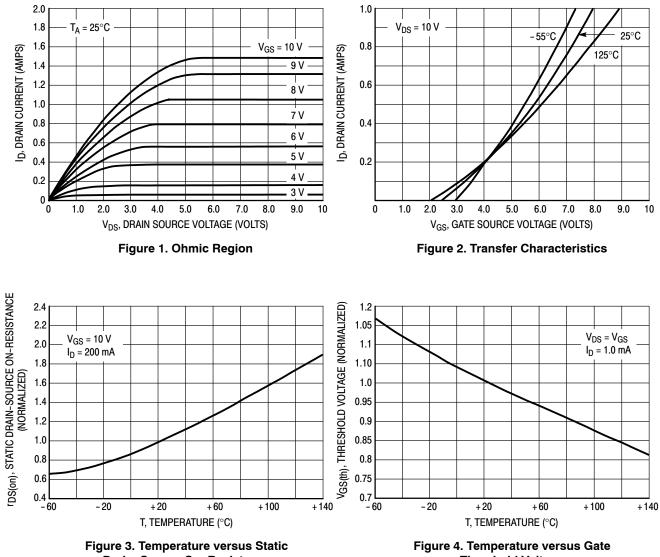
| Device      | Package             | Shipping <sup>†</sup> |  |
|-------------|---------------------|-----------------------|--|
| 2N7002LT1G  |                     | 3,000 Tape & Reel     |  |
| 2N7002LT3G  | SOT-23<br>(Pb-Free) | 1 10 000 Jane & Reel  |  |
| 2N7002LT7G  |                     | 3,500 Tape & Reel     |  |
| 2V7002LT1G  |                     | 3,000 Tape & Reel     |  |
| 2V7002LT3G  | SOT-23<br>(Pb-Free) | 10,000 Tape & Reel    |  |
| 2N7002LT1H* |                     | 3,000 Tape & Reel     |  |
| 2N7002LT7H* |                     | 3,500 Tape & Reel     |  |

+For information on tape and reel specifications,

including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

\*Not for new design.

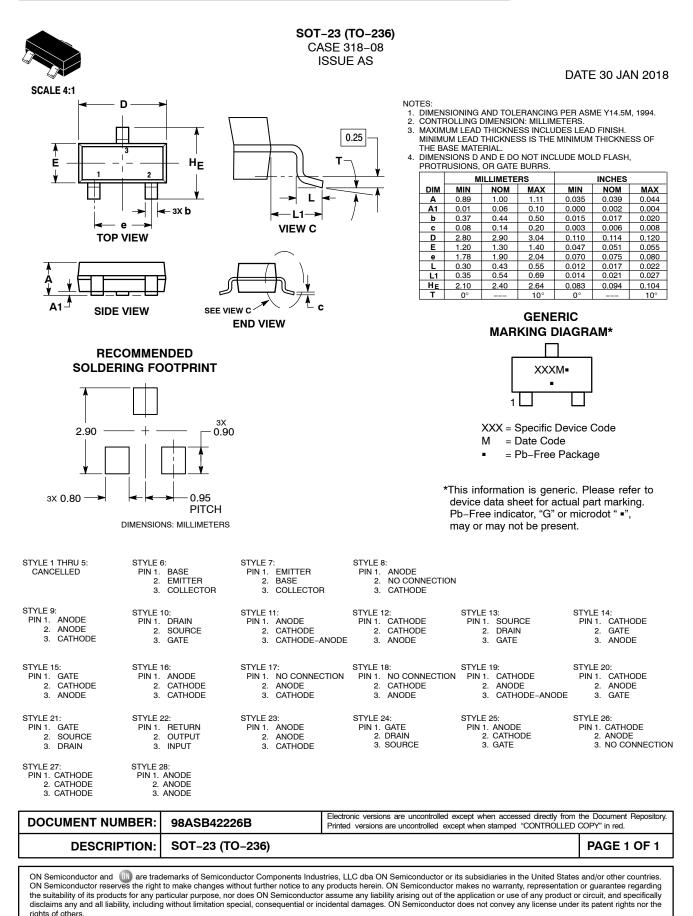
# 2N7002L, 2V7002L


# **ELECTRICAL CHARACTERISTICS** ( $T_A = 25^{\circ}C$ unless otherwise noted)

| Characteristic                                                                                                                                                              | Symbol               | Min | Тур | Мах                | Unit |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-----|-----|--------------------|------|
| OFF CHARACTERISTICS                                                                                                                                                         |                      |     | •   |                    |      |
| Drain–Source Breakdown Voltage ( $V_{GS}$ = 0, $I_D$ = 10 µAdc)                                                                                                             | V <sub>(BR)DSS</sub> | 60  | -   | -                  | Vdc  |
| $ \begin{array}{ll} \mbox{Zero Gate Voltage Drain Current} & T_J = 25^\circ C \\ (V_{GS} = 0,  V_{DS} = 60  Vdc) & T_J = 125^\circ C \end{array} $                          | I <sub>DSS</sub>     | -   |     | 1.0<br>500         | μAdc |
| Gate-Body Leakage Current, Forward<br>(V <sub>GS</sub> = 20 Vdc)                                                                                                            | I <sub>GSSF</sub>    | -   | _   | 100                | nAdc |
| Gate-Body Leakage Current, Reverse<br>(V <sub>GS</sub> = -20 Vdc)                                                                                                           | I <sub>GSSR</sub>    | -   | _   | -100               | nAdc |
| ON CHARACTERISTICS (Note 5)                                                                                                                                                 |                      |     |     |                    |      |
| Gate Threshold Voltage $(V_{DS} = V_{GS}, I_D = 250 \ \mu Adc)$                                                                                                             | V <sub>GS(th)</sub>  | 1.0 | _   | 2.5                | Vdc  |
| On–State Drain Current $(V_{DS} \ge 2.0 V_{DS(on)}, V_{GS} = 10 \text{ Vdc})$                                                                                               | I <sub>D(on)</sub>   | 500 | -   | -                  | mA   |
| Static Drain–Source On–State Voltage $(V_{GS} = 10 \text{ Vdc}, I_D = 500 \text{ mAdc})$ $(V_{GS} = 5.0 \text{ Vdc}, I_D = 50 \text{ mAdc})$                                | V <sub>DS(on)</sub>  | -   |     | 3.75<br>0.375      | Vdc  |
| Static Drain–Source On–State Resistance<br>$(V_{GS} = 10 \text{ V}, \text{ I}_D = 500 \text{ mAdc})$<br>$T_C = 25^{\circ}C$<br>$T_C = 125^{\circ}C$<br>$T_C = 125^{\circ}C$ | r <sub>DS(on)</sub>  | -   |     | 7.5<br>13.5<br>7.5 | Ohms |
| $  (V_{GS} = 5.0 \text{ Vdc}, I_D = 50 \text{ mAdc}) \qquad \qquad \tilde{T}_C = 25^{\circ}C \\ T_C = 125^{\circ}C $                                                        |                      | -   | _   | 7.5<br>13.5        |      |
| Forward Transconductance $(V_{DS} \ge 2.0 V_{DS(on)}, I_D = 200 \text{ mAdc})$                                                                                              | 9FS                  | 80  | -   | -                  | mS   |
| DYNAMIC CHARACTERISTICS                                                                                                                                                     |                      |     |     |                    |      |
| Input Capacitance<br>(V <sub>DS</sub> = 25 Vdc, V <sub>GS</sub> = 0, f = 1.0 MHz)                                                                                           | C <sub>iss</sub>     | -   | _   | 50                 | pF   |
| Output Capacitance $(V_{DS} = 25 \text{ Vdc}, V_{GS} = 0, f = 1.0 \text{ MHz})$                                                                                             | C <sub>oss</sub>     | -   | -   | 25                 | pF   |
| Reverse Transfer Capacitance $(V_{DS} = 25 \text{ Vdc}, V_{GS} = 0, f = 1.0 \text{ MHz})$                                                                                   | C <sub>rss</sub>     | -   | -   | 5.0                | pF   |
| SWITCHING CHARACTERISTICS (Note 5)                                                                                                                                          |                      |     | •   |                    |      |
| Turn–On Delay Time $(V_{DD} = 25 \text{ Vdc}, I_D \cong 500 \text{ mAdc},$                                                                                                  | t <sub>d(on)</sub>   | _   | _   | 20                 | ns   |
| Turn–Off Delay Time $R_G = 25 \Omega$ , $R_L = 50 \Omega$ , $V_{gen} = 10 V$ )                                                                                              | t <sub>d(off)</sub>  | -   | _   | 40                 | ns   |
| BODY-DRAIN DIODE RATINGS                                                                                                                                                    |                      |     |     |                    |      |
| Diode Forward On–Voltage $(I_S = 115 \text{ mAdc}, V_{GS} = 0 \text{ V})$                                                                                                   | $V_{SD}$             | -   | _   | -1.5               | Vdc  |
| Source Current Continuous<br>(Body Diode)                                                                                                                                   | I <sub>S</sub>       | -   | -   | -115               | mAdc |
| Source Current Pulsed                                                                                                                                                       | I <sub>SM</sub>      | _   | _   | - 800              | mAdc |

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. 5. Pulse Test: Pulse Width  $\leq$  300 µs, Duty Cycle  $\leq$  2.0%.

# 2N7002L, 2V7002L


## **TYPICAL ELECTRICAL CHARACTERISTICS**



Drain-Source On-Resistance

**Threshold Voltage** 





© Semiconductor Components Industries, LLC, 2019

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and calcular performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

#### PUBLICATION ORDERING INFORMATION

#### LITERATURE FULFILLMENT:

#### TECHNICAL SUPPORT

onsemi Website: www.onsemi.com

Email Requests to: orderlit@onsemi.com

North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative

# **Mouser Electronics**

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

onsemi:

2N7002LT1 2N7002LT1G 2N7002LT3 2N7002LT3G 2V7002LT1G 2N7002L 2V7002LT3G 2N7002LT7G