Document Category: Product Specification

UltraCMOS® SP6T RF Switch, 9 kHz-8 GHz

Figure 1 • PE42562 Functional Diagram

- Filter bank switching
- RF signal routing

Product Description

The PE42562 is a HaRP ${ }^{\text {TM }}$ technology-enhanced absorptive SP6T RF switch that supports a frequency range from 9 kHz to 8 GHz . An external V_{SS} pin is available for bypassing the internal negative voltage generator in order for the PE42562 to deliver spur-free performance. It delivers high isolation, low insertion loss and fast switching time, making this device ideal for filter bank switching and RF signal routing in test and measurement (T\&M) and wireless applications up to 8 GHz . No blocking capacitors are required if DC voltage is not present on the RF ports.

The PE42562 is manufactured on pSemi's UltraCMOS ${ }^{\circledR}$ process, a patented advanced form of silicon-oninsulator (SOI) technology.
pSemi's HaRP technology enhancements deliver high linearity and excellent harmonics performance. It is an innovative feature of the UltraCMOS process, offering the performance of GaAs with the economy and integration of conventional CMOS.

Optional External $\mathrm{V}_{\text {ss }}$

For proper operation, the $\mathrm{V}_{\text {SS_EXT }}$ pin must be grounded or tied to the $\mathrm{V}_{\text {SS }}$ voltage specified in Table 2. When the $\mathrm{V}_{\text {SS_ExT }}$ pin is grounded, FETs in the switch are biased with an internal negative voltage generator. For applications that require the lowest possible spur performance, $\mathrm{V}_{\text {SS_ExT }}$ can be applied externally to bypass the internal negative voltage generator.

Absolute Maximum Ratings

Exceeding absolute maximum ratings listed in Table 1 may cause permanent damage. Operation should be restricted to the limits in Table 2. Operation between operating range maximum and absolute maximum for extended periods may reduce reliability.

ESD Precautions

When handling this UltraCMOS device, observe the same precautions as with any other ESD-sensitive devices. Although this device contains circuitry to protect it from damage due to ESD, precautions should be taken to avoid exceeding the rating specified in Table 1.

Latch-up Immunity

Unlike conventional CMOS devices, UltraCMOS devices are immune to latch-up.
Table 1 • Absolute Maximum Ratings for PE42562

Parameter/Condition	Min	Max	Unit
Supply voltage, V_{DD}	-0.3	5.5	V
Digital input voltage (V1, V2, V3, LS)	-0.3	3.6	V
RF input power (RFC-RFX, 50ת)		See Figure 2	dBm
RF input power into terminated ports, CW(1) (RFX, 50ת)	-65	See Figure 2	dBm
Maximum junction temperature		+150	${ }^{\circ} \mathrm{C}$
Storage temperature range		1000	${ }^{\circ} \mathrm{C}$
ESD voltage HBM, all pins ${ }^{(1)}$		1000	V
ESD voltage CDM, all pins ${ }^{(3)}$			

Notes:

1) 100% duty cycle, all bands, 50Ω.
2) Human body model (MIL-STD 883 Method 3015).
3) Charged device model (JEDEC JESD22-C101).

Recommended Operating Conditions

Table 2 lists the recommended operating conditions for the PE42562. Devices should not be operated outside the recommended operating conditions listed below.

Table 2 • Recommended Operating Conditions for PE42562

Parameter	Min	Typ	Max	Unit
Normal mode ($\left.\mathrm{V}_{\text {SS_EXT }}=0 \mathrm{~V}\right)^{(1)}$				
Supply voltage, V_{DD}	2.3	3.3	5.5	V
Supply current, ${ }_{\text {DD }}$		120	200	$\mu \mathrm{A}$
Bypass mode ($\left.\mathrm{V}_{\text {SS_EXT }}=-3.0 \mathrm{~V}\right)^{(2)}$				
Supply voltage, V_{DD} (Table 3 spec . compliance applies for $\mathrm{V}_{\mathrm{DD}} \geq 3.4 \mathrm{~V}$)	3.1	3.4	5.5	V
Supply current, ${ }_{\text {DD }}$		80	160	$\mu \mathrm{A}$
Negative supply voltage, $\mathrm{V}_{\text {SS_EXT }}$	-3.3	-3.0	-2.7	V
Negative supply current, ISS	-40	-16		$\mu \mathrm{A}$
Normal or Bypass mode				
Digital input high (V1, V2, V3, LS)	1.17		3.6	V
Digital input low (V1, V2, V3, LS)	-0.3		0.6	V
Digital input current V1, V2, V3 LS			$\begin{gathered} 5 \\ 10 \end{gathered}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$
RF input power, CW (RFC-RFX) ${ }^{(3)}$			See Figure 2	dBm
RF input power, pulsed (RFC-RFX) ${ }^{(4)}$			See Figure 2	dBm
RF input power into terminated ports, $\mathrm{CW}(\mathrm{RFX})^{(3)}$			See Figure 2	dBm
Operating temperature range	-40	+25	+105	${ }^{\circ} \mathrm{C}$
Notes: 1) Normal mode: connect $\mathrm{V}_{\text {SS_EXT }}$ (pin 7) to $G N D\left(V_{S S _E X T}=0 V\right)$ to enable internal negative voltage generator. 2) Bypass mode: use $V_{S S _E X T}$ (pin 7) to bypass and disable internal negative voltage generator. 3) 100% duty cycle, all bands, 50Ω. 4) Pulsed, 5% duty cycle of 4620μ s period, 50Ω.				

Electrical Specifications

Table 3 provides the PE42562 key electrical specifications at $+25^{\circ} \mathrm{C}\left(Z_{S}=Z_{L}=50 \Omega\right)$, unless otherwise specified. Normal mode ${ }^{(1)}$ is at $\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}$ and $\mathrm{V}_{\text {Ss_EXT }}=0 \mathrm{~V}$. Bypass mode ${ }^{(2)}$ is at $\mathrm{V}_{\mathrm{DD}}=3.4 \mathrm{~V}$ and $\mathrm{V}_{\text {SS_EXT }}=-3.0 \mathrm{~V}$.

Table 3 • PE42562 Electrical Specifications

Parameter	Path	Condition	Min	Typ	Max	Unit
Operating frequency			9 kHz		8 GHz	$\begin{aligned} & \text { As } \\ & \text { shown } \end{aligned}$
Insertion loss ${ }^{(3)}$	RFC-RF1/6	$\begin{aligned} & 9 \mathrm{kHz}-100 \mathrm{MHz} \\ & 100 \mathrm{MHz}-1 \mathrm{GHz} \\ & 1-2 \mathrm{GHz} \\ & 2-4 \mathrm{GHz} \\ & 4-6 \mathrm{GHz} \\ & 6-8 \mathrm{GHz} \end{aligned}$		$\begin{aligned} & \hline 0.7 \\ & 0.8 \\ & 0.9 \\ & 0.9 \\ & 1.1 \\ & 1.6 \end{aligned}$	$\begin{aligned} & 0.9 \\ & 1.0 \\ & 1.2 \\ & 1.5 \\ & 1.9 \\ & 2.8 \end{aligned}$	
	RFC-RF2/5	$\begin{aligned} & 9 \mathrm{kHz}-100 \mathrm{MHz} \\ & 100 \mathrm{MHz}-1 \mathrm{GHz} \\ & 1-2 \mathrm{GHz} \\ & 2-4 \mathrm{GHz} \\ & 4-6 \mathrm{GHz} \\ & 6-8 \mathrm{GHz} \end{aligned}$		$\begin{aligned} & 0.8 \\ & 0.9 \\ & 0.9 \\ & 1.0 \\ & 1.3 \\ & 1.3 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.1 \\ & 1.3 \\ & 1.6 \\ & 2.3 \\ & 2.4 \end{aligned}$	dB dB dB dB dB dB
	RFC-RF3/4	$\begin{aligned} & 9 \mathrm{kHz}-100 \mathrm{MHz} \\ & 100 \mathrm{MHz}-1 \mathrm{GHz} \\ & 1-2 \mathrm{GHz} \\ & 2-4 \mathrm{GHz} \\ & 4-6 \mathrm{GHz} \\ & 6-8 \mathrm{GHz} \end{aligned}$		$\begin{aligned} & 0.8 \\ & 0.9 \\ & 1.0 \\ & 1.1 \\ & 1.2 \\ & 1.3 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.1 \\ & 1.3 \\ & 1.7 \\ & 2.2 \\ & 2.2 \end{aligned}$	dB dB dB dB dB dB
Isolation ${ }^{(3)}$	RFC-RF1/6	$\begin{aligned} & 9 \mathrm{kHz}-100 \mathrm{MHz} \\ & 100 \mathrm{MHz}-1 \mathrm{GHz} \\ & 1-2 \mathrm{GHz} \\ & 2-4 \mathrm{GHz} \\ & 4-6 \mathrm{GHz} \\ & 6-8 \mathrm{GHz} \end{aligned}$	$\begin{aligned} & 61 \\ & 45 \\ & 40 \\ & 34 \\ & 29 \\ & 27 \end{aligned}$	$\begin{aligned} & 65 \\ & 47 \\ & 42 \\ & 36 \\ & 32 \\ & 30 \end{aligned}$		dB dB dB dB dB dB
	RFC-RF2/5	$\begin{aligned} & 9 \mathrm{kHz}-100 \mathrm{MHz} \\ & 100 \mathrm{MHz}-1 \mathrm{GHz} \\ & 1-2 \mathrm{GHz} \\ & 2-4 \mathrm{GHz} \\ & 4-6 \mathrm{GHz} \\ & 6-8 \mathrm{GHz} \end{aligned}$	$\begin{aligned} & 64 \\ & 52 \\ & 47 \\ & 42 \\ & 30 \\ & 29 \end{aligned}$	$\begin{aligned} & 68 \\ & 55 \\ & 51 \\ & 44 \\ & 34 \\ & 34 \end{aligned}$		dB dB dB dB dB dB
	RFC-RF3/4	$\begin{aligned} & 9 \mathrm{kHz}-100 \mathrm{MHz} \\ & 100 \mathrm{MHz}-1 \mathrm{GHz} \\ & 1-2 \mathrm{GHz} \\ & 2-4 \mathrm{GHz} \\ & 4-6 \mathrm{GHz} \\ & 6-8 \mathrm{GHz} \end{aligned}$	$\begin{aligned} & 64 \\ & 51 \\ & 46 \\ & 38 \\ & 33 \\ & 29 \end{aligned}$	$\begin{aligned} & 68 \\ & 53 \\ & 48 \\ & 40 \\ & 35 \\ & 31 \end{aligned}$		dB dB dB dB dB dB

Table 3 : PE42562 Electrical Specifications (Cont.)

Parameter	Path	Condition	Min	Tур	Max	Unit
Return loss (active port)	RFC-RF1/6	$\begin{aligned} & 9 \mathrm{kHz}-100 \mathrm{MHz} \\ & 100 \mathrm{MHz}-1 \mathrm{GHz} \\ & 1-2 \mathrm{GHz} \\ & 2-4 \mathrm{GHz} \\ & 4-6 \mathrm{GHz} \\ & 6-8 \mathrm{GHz} \end{aligned}$		$\begin{aligned} & 25 \\ & 24 \\ & 24 \\ & 21 \\ & 26 \\ & 13 \end{aligned}$		dB dB dB dB dB dB
	RFC-RF2/5	$\begin{aligned} & 9 \mathrm{kHz}-100 \mathrm{MHz} \\ & 100 \mathrm{MHz}-1 \mathrm{GHz} \\ & 1-2 \mathrm{GHz} \\ & 2-4 \mathrm{GHz} \\ & 4-6 \mathrm{GHz} \\ & 6-8 \mathrm{GHz} \end{aligned}$		$\begin{aligned} & 24 \\ & 23 \\ & 20 \\ & 18 \\ & 15 \\ & 16 \end{aligned}$		dB dB dB dB dB dB
	RFC-RF3/4	$\begin{aligned} & 9 \mathrm{kHz}-100 \mathrm{MHz} \\ & 100 \mathrm{MHz}-1 \mathrm{GHz} \\ & 1-2 \mathrm{GHz} \\ & 2-4 \mathrm{GHz} \\ & 4-6 \mathrm{GHz} \\ & 6-8 \mathrm{GHz} \end{aligned}$		$\begin{aligned} & 24 \\ & 23 \\ & 18 \\ & 15 \\ & 12 \\ & 12 \end{aligned}$		dB dB dB dB dB dB
Return loss (RFC port)	RFC-RF1/6	$\begin{aligned} & 9 \mathrm{kHz}-100 \mathrm{MHz} \\ & 100 \mathrm{MHz}-1 \mathrm{GHz} \\ & 1-2 \mathrm{GHz} \\ & 2-4 \mathrm{GHz} \\ & 4-6 \mathrm{GHz} \\ & 6-8 \mathrm{GHz} \end{aligned}$		$\begin{aligned} & 25 \\ & 23 \\ & 24 \\ & 23 \\ & 24 \\ & 12 \end{aligned}$		dB dB dB dB dB dB
	RFC-RF2/5	$\begin{aligned} & 9 \mathrm{kHz}-100 \mathrm{MHz} \\ & 100 \mathrm{MHz}-1 \mathrm{GHz} \\ & 1-2 \mathrm{GHz} \\ & 2-4 \mathrm{GHz} \\ & 4-6 \mathrm{GHz} \\ & 6-8 \mathrm{GHz} \end{aligned}$		$\begin{aligned} & 24 \\ & 23 \\ & 21 \\ & 19 \\ & 20 \\ & 18 \end{aligned}$		dB dB dB dB dB dB
	RFC-RF3/4	$\begin{aligned} & 9 \mathrm{kHz}-100 \mathrm{MHz} \\ & 100 \mathrm{MHz}-1 \mathrm{GHz} \\ & 1-2 \mathrm{GHz} \\ & 2-4 \mathrm{GHz} \\ & 4-6 \mathrm{GHz} \\ & 6-8 \mathrm{GHz} \end{aligned}$		$\begin{aligned} & 24 \\ & 23 \\ & 19 \\ & 16 \\ & 13 \\ & 13 \end{aligned}$		dB dB dB dB dB dB

Aurata Company

Table 3 : PE42562 Electrical Specifications (Cont.)

Parameter	Path	Condition	Min	Typ	Max	Unit
Return loss (terminated port)	RF1/6	$\begin{aligned} & 9 \mathrm{kHz}-100 \mathrm{MHz} \\ & 100 \mathrm{MHz}-1 \mathrm{GHz} \\ & 1-2 \mathrm{GHz} \\ & 2-4 \mathrm{GHz} \\ & 4-6 \mathrm{GHz} \\ & 6-8 \mathrm{GHz} \end{aligned}$		$\begin{aligned} & 16 \\ & 15 \\ & 15 \\ & 15 \\ & 18 \\ & 21 \end{aligned}$		dB dB dB dB dB dB
	RF2/5	$\begin{aligned} & 9 \mathrm{kHz}-100 \mathrm{MHz} \\ & 100 \mathrm{MHz}-1 \mathrm{GHz} \\ & 1-2 \mathrm{GHz} \\ & 2-4 \mathrm{GHz} \\ & 4-6 \mathrm{GHz} \\ & 6-8 \mathrm{GHz} \end{aligned}$		16 15 15 15 18 19		
	RF3/4	$\begin{aligned} & 9 \mathrm{kHz}-100 \mathrm{MHz} \\ & 100 \mathrm{MHz}-1 \mathrm{GHz} \\ & 1-2 \mathrm{GHz} \\ & 2-4 \mathrm{GHz} \\ & 4-6 \mathrm{GHz} \\ & 6-8 \mathrm{GHz} \end{aligned}$		$\begin{aligned} & 16 \\ & 15 \\ & 15 \\ & 15 \\ & 16 \\ & 19 \end{aligned}$		dB dB dB dB dB dB
Relative insertion phase ${ }^{(4)}$	$\begin{gathered} \text { RF2-RF1 } \\ \text { (RF5-RF6) } \end{gathered}$	$\begin{aligned} & 1 \mathrm{GHz} \\ & 2 \mathrm{GHz} \\ & 4 \mathrm{GHz} \\ & 6 \mathrm{GHz} \\ & 8 \mathrm{GHz} \end{aligned}$	$\begin{aligned} & -2.6 \\ & -4.7 \\ & -7.5 \\ & -9.4 \\ & -1.4 \end{aligned}$	$\begin{gathered} -1.3 \\ -2.4 \\ -3.4 \\ -2.8 \\ 4.4 \end{gathered}$	$\begin{gathered} 0 \\ -0.1 \\ 0.7 \underline{8} \\ 3.8 \\ 10.01 \end{gathered}$	Deg Deg Deg Deg Deg
	$\begin{aligned} & \text { RF3-RF1 } \\ & \text { (RF4-RF6) } \end{aligned}$	$\begin{aligned} & 1 \mathrm{GHz} \\ & 2 \mathrm{GHz} \\ & 4 \mathrm{GHz} \\ & 6 \mathrm{GHz} \\ & 8 \mathrm{GHz} \end{aligned}$	$\begin{gathered} -3.0 \\ -5.8 \\ -9.3 \\ -11.2 \\ -10.2 \end{gathered}$	$\begin{aligned} & -2.1 \\ & -4.0 \\ & -5.6 \\ & -5.7 \\ & -1.0 \end{aligned}$	$\begin{gathered} -1.2 \underline{3} \\ -2.1 \\ -1.9 \\ -0.2 \underline{3} \\ 8.2 \end{gathered}$	Deg Deg Deg Deg Deg
Input 1dB compression point ${ }^{(5)}$	RFC-RFX			See Figure 2		dBm
Input 0.1dB compression point ${ }^{(5)}$	RFC-RFX			See Figure 2		dBm
Input IP2	RFC-RFX	$\begin{aligned} & 5 \mathrm{MHz} \\ & 100 \mathrm{MHz}-8 \mathrm{GHz} \end{aligned}$		$\begin{gathered} 75 \\ 105 \end{gathered}$		$\begin{aligned} & \mathrm{dBm} \\ & \mathrm{dBm} \end{aligned}$
Input IP3	RFC-RFX	$\begin{aligned} & 5 \mathrm{MHz} \\ & 100 \mathrm{MHz}-8 \mathrm{GHz} \end{aligned}$		$\begin{aligned} & 53 \\ & 60 \end{aligned}$		$\begin{aligned} & \mathrm{dBm} \\ & \mathrm{dBm} \end{aligned}$
RF $\mathrm{T}_{\text {RISE }} / \mathrm{T}_{\text {FALL }}$		10\%/90\% RF		100	130	ns
Settling time		50\% CTRL to 0.05 dB final value		560	920	ns
Switching time		50% CTRL to 90% or 10% of RF		210	270	ns
Notes: 1) Normal mode: connect 2) Bypass mode: use $V_{S S}$ 3) Insertion loss and isola 4) Defined with S-parame response Port- $(x+1)=R$ 5) The input 1 dB and 0.1 d	Ext (pin 7) to (pin 7) to bypa erformance ca elative insertio mpression poin	$\left(V_{\text {SS_EXT }}=0 V\right)$ to enable internal ne and disable internal negative voltage g improved by a good RF ground on the ase $($ RFX-RF1 $)=\angle \mathrm{S}_{(\mathrm{x}+1) 1}-\angle \mathrm{S}_{21}$, linearity figures of merit. Refer to Ta	gene 1). t Port-1 RF inp	RFC, respo power (50 2)	Port-2	F1, and

Switching Frequency

The PE42562 has a maximum 25 kHz switching frequency in normal mode (pin 7 tied to ground). A faster switching frequency is available in bypass mode (pin 7 tied to $V_{\text {SS_ExT }}$). The rate at which the PE42562 can be switched is then limited to the switching time as specified in Table 3.
Switching frequency describes the time duration between switching events. Switching time is the time duration between the point the control signal reached 50% of the final value and the point the output signal reaches within 10% or 90% of its target value.

Spur-free Performance

The PE42562 spur fundamental occurs around 5 MHz . Its typical performance in normal mode is $-162 \mathrm{dBm} / \mathrm{Hz}$ (pin 7 tied to ground), with 30 kHz bandwidth. If spur-free performance is desired, the internal negative voltage generator can be disabled by applying a negative voltage to $\mathrm{V}_{\text {SS_ExT }}$ (pin 7).

Hot-Switching Capability

The maximum hot switching capability of the PE42562 is 20 dBm above 100 MHz . Hot switching occurs when RF power is applied while switching between RF ports.

Thermal Data

Psi-JT ($\Psi_{J T}$), junction top-of-package, is a thermal metric to estimate junction temperature of a device on the customer application PCB (JEDEC JESD51-2).
$\Psi_{J T}=\left(T_{J}-T_{T}\right) / P$
where
$\Psi_{\mathrm{JT}}=$ junction-to-top of package characterization parameter, ${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{T}_{\mathrm{J}}=$ die junction temperature, ${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{T}}=$ package temperature (top surface, in the center), ${ }^{\circ} \mathrm{C}$

P = power dissipated by device, Watts
Table 4 • Thermal Data for PE42562

Parameter	Typ	Unit
Ψ_{JT}	23	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\Theta_{\mathrm{JA},}$, junction-to-ambient thermal resistance	63	${ }^{\circ} \mathrm{C} / \mathrm{W}$

Control Logic

Table 5 provides the control logic truth table for PE42562.
Table 5 • Truth Table for PE42562

Ls $^{(1)}$	V3	V2	V1	RFC-RF1	RFC-RF2	RFC-RF3	RFC-RF4	RFC-RF5	RFC-RF6
0	0	0	0	ON	OFF	OFF	OFF	OFF	OFF
0	1	0	0	OFF	ON	OFF	OFF	OFF	OFF
0	0	1	0	OFF	OFF	ON	OFF	OFF	OFF
0	1	1	0	OFF	OFF	OFF	ON	OFF	OFF
0	0	0	1	OFF	OFF	OFF	OFF	ON	OFF
0	1	0	1	OFF	OFF	OFF	OFF	OFF	ON
1	1	0	1	ON	OFF	OFF	OFF	OFF	OFF
1	0	0	1	OFF	ON	OFF	OFF	OFF	OFF
1	1	1	0	OFF	OFF	ON	OFF	OFF	OFF
1	0	1	0	OFF	OFF	OFF	ON	OFF	OFF
1	1	0	0	OFF	OFF	OFF	OFF	ON	OFF
1	0	0	0	OFF	OFF	OFF	OFF	OFF	ON
$X^{(2)}$	0	1	1	OFF	OFF	OFF	OFF	OFF	OFF

Notes:

1) LS has an internal $1 \mathrm{M} \Omega$ pull-up resistor to logic high. Connect LS to GND externally to generate a logic 0 . Leaving LS floating will generate a logic 1.
2) $\mathrm{LS}=$ don't care, $\mathrm{V} 3=0, \mathrm{~V} 2=\mathrm{V} 1=1$, all ports are terminated to provide an all isolated state.

Power De-rating Curve

Figure 2 shows the power de-rating curve showing P 1 dB compression, P 0.1 dB compression, maximum RF input power (pulsed), maximum RF input power (CW), absolute maximum RF terminated power (CW), and maximum RF terminated power (CW).

Figure 2 • Power De-rating Curve, $9 \mathrm{kHz}-8 \mathrm{GHz},-40^{\circ} \mathrm{C}$ to + $105^{\circ} \mathrm{C}$ Ambient, 50?

Isolation Matrix

Table 6 provides RFC-to-port isolation and Table 7 provides port-to-port isolation at $+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}$ $\left(Z_{S}=Z_{L}=50 \Omega\right)$. Normal mode ${ }^{(1)}$ is at $V_{D D}=3.3 \mathrm{~V}$ and $\mathrm{V}_{\text {SS_EXT }}=0 \mathrm{~V}$. Bypass mode ${ }^{(2)}$ is at $\mathrm{V}_{\mathrm{DD}}=3.4 \mathrm{~V}$ and $V_{S S _E X T}=-3.0 \mathrm{~V}$.

Table 6 - RFC-to-Port Isolation

"ON" Port	Frequency	Isolation (dB)						
		RF1	RF2	RF3	RF4	RF5	RF6	
RF1	$\begin{gathered} 9 \mathrm{kHz}-100 \mathrm{MHz} \\ 100 \mathrm{MHz}-1 \mathrm{GHz} \\ 1-2 \mathrm{GHz} \\ 2-4 \mathrm{GHz} \\ 4-6 \mathrm{GHz} \\ 6-8 \mathrm{GHz} \end{gathered}$	-	69	68	88	87	79	
		-	62	53	66	64	57	
		-	57	48	60	58	51	
		-	48	40	54	52	45	
		-	37	35	50	46	42	
		-	34	31	47	45	38	
RF2	$\begin{gathered} 9 \mathrm{kHz}-100 \mathrm{MHz} \\ 100 \mathrm{MHz}-1 \mathrm{GHz} \\ 1-2 \mathrm{GHz} \\ 2-4 \mathrm{GHz} \\ 4-6 \mathrm{GHz} \\ 6-8 \mathrm{GHz} \end{gathered}$	67	-	69	88	86	77	
		52	-	60	66	64	56	
		46	-	57	60	57	50	
		39	-	49	53	52	45	
		32	-	43	50	46	42	
		30	-	37	47	46	40	
RF3	$\begin{gathered} 9 \mathrm{kHz}-100 \mathrm{MHz} \\ 100 \mathrm{MHz}-1 \mathrm{GHz} \\ 1-2 \mathrm{GHz} \\ 2-4 \mathrm{GHz} \\ 4-6 \mathrm{GHz} \\ 6-8 \mathrm{GHz} \end{gathered}$	65	68	-	88	85	77	
		47	55	-	66	63	55	
		42	51	-	60	57	50	
		36	44	-	53	52	45	
		33	40	-	49	47	42	
		31	36	-	46	47	40	
RF4	$\begin{gathered} 9 \mathrm{kHz}-100 \mathrm{MHz} \\ 100 \mathrm{MHz}-1 \mathrm{GHz} \\ 1-2 \mathrm{GHz} \\ 2-4 \mathrm{GHz} \\ 4-6 \mathrm{GHz} \\ 6-8 \mathrm{GHz} \end{gathered}$	73	84	88	-	68	66	
		51	62	65	-	56	50	
		45	56	59	-	51	45	
		40	49	53	-	46	39	
		37	46	49	-	38	35	
		34	44	45	-	37	33	
RF5	$\begin{gathered} 9 \mathrm{kHz}-100 \mathrm{MHz} \\ 100 \mathrm{MHz}-1 \mathrm{GHz} \\ 1-2 \mathrm{GHz} \\ 2-4 \mathrm{GHz} \\ 4-6 \mathrm{GHz} \\ 6-8 \mathrm{GHz} \end{gathered}$	73	84	89	69	-	68	
		51	62	65	60	-	57	
		45	56	59	57	-	52	
		40	49	53	50	-	44	
		37	45	49	41	-	33	
		34	43	46	38	-	33	
RF6	$\begin{gathered} \hline 9 \mathrm{kHz}-100 \mathrm{MHz} \\ 100 \mathrm{MHz}-1 \mathrm{GHz} \\ 1-2 \mathrm{GHz} \\ 2-4 \mathrm{GHz} \\ 4-6 \mathrm{GHz} \\ 6-8 \mathrm{GHz} \end{gathered}$	74	84	87	68	69	-	
		52	62	66	54	65	-	
		46	57	60	48	60	-	
		40	49	53	41	51	-	
		37	46	49	35	34	-	
		33	42	46	31	35	-	
Notes: 1) Normal mode: connect $\mathrm{V}_{\text {SS_EXT }}$ (pin 7) to $G N D\left(\mathrm{~V}_{\text {SS_EXT }}=0 \mathrm{~V}\right.$) to enable internal negative voltage generator. 2) Bypass mode: use $\mathrm{V}_{\text {SS_EXT }}$ (pin 7) to bypass and disable internal negative voltage generator.								

Table 7 • Port-to-Port Isolation

"ON" Port	Frequency	Isolation (dB)					
		RF1	RF2	RF3	RF4	RF5	RF6
RF1	$\begin{gathered} 9 \mathrm{kHz}-100 \mathrm{MHz} \\ 100 \mathrm{MHz}-1 \mathrm{GHz} \\ 1-2 \mathrm{GHz} \\ 2-4 \mathrm{GHz} \\ 4-6 \mathrm{GHz} \\ 6-8 \mathrm{GHz} \end{gathered}$		$\begin{aligned} & 65 \\ & 47 \\ & 41 \\ & 35 \\ & 31 \\ & 29 \end{aligned}$	$\begin{aligned} & 67 \\ & 51 \\ & 45 \\ & 39 \\ & 34 \\ & 30 \end{aligned}$	$\begin{aligned} & 89 \\ & 69 \\ & 63 \\ & 57 \\ & 52 \\ & 49 \end{aligned}$	$\begin{aligned} & 89 \\ & 71 \\ & 65 \\ & 60 \\ & 47 \\ & 47 \end{aligned}$	$\begin{aligned} & 88 \\ & 64 \\ & 60 \\ & 53 \\ & 45 \\ & 43 \end{aligned}$
RF2	$\begin{gathered} 9 \mathrm{kHz}-100 \mathrm{MHz} \\ 100 \mathrm{MHz}-1 \mathrm{GHz} \\ 1-2 \mathrm{GHz} \\ 2-4 \mathrm{GHz} \\ 4-6 \mathrm{GHz} \\ 6-8 \mathrm{GHz} \end{gathered}$	$\begin{aligned} & 65 \\ & 46 \\ & 41 \\ & 35 \\ & 32 \\ & 29 \end{aligned}$		$\begin{aligned} & 64 \\ & 45 \\ & 39 \\ & 34 \\ & 30 \\ & 27 \end{aligned}$	$\begin{aligned} & 91 \\ & 70 \\ & 64 \\ & 58 \\ & 53 \\ & 50 \end{aligned}$	$\begin{aligned} & 92 \\ & 75 \\ & 69 \\ & 64 \\ & 50 \\ & 50 \end{aligned}$	$\begin{aligned} & 89 \\ & 74 \\ & 72 \\ & 63 \\ & 51 \\ & 51 \end{aligned}$
RF3	$\begin{gathered} 9 \mathrm{kHz}-100 \mathrm{MHz} \\ 100 \mathrm{MHz}-1 \mathrm{GHz} \\ 1-2 \mathrm{GHz} \\ 2-4 \mathrm{GHz} \\ 4-6 \mathrm{GHz} \\ 6-8 \mathrm{GHz} \end{gathered}$	$\begin{aligned} & 67 \\ & 51 \\ & 46 \\ & 40 \\ & 37 \\ & 33 \end{aligned}$	$\begin{aligned} & 65 \\ & 47 \\ & 41 \\ & 36 \\ & 33 \\ & 30 \end{aligned}$		$\begin{aligned} & 90 \\ & 70 \\ & 64 \\ & 58 \\ & 53 \\ & 50 \end{aligned}$	$\begin{aligned} & 92 \\ & 78 \\ & 72 \\ & 66 \\ & 51 \\ & 51 \end{aligned}$	$\begin{aligned} & 91 \\ & 80 \\ & 79 \\ & 68 \\ & 54 \\ & 54 \end{aligned}$
RF4	$\begin{gathered} 9 \mathrm{kHz}-100 \mathrm{MHz} \\ 100 \mathrm{MHz}-1 \mathrm{GHz} \\ 1-2 \mathrm{GHz} \\ 2-4 \mathrm{GHz} \\ 4-6 \mathrm{GHz} \\ 6-8 \mathrm{GHz} \end{gathered}$	$\begin{aligned} & 90 \\ & 77 \\ & 65 \\ & 56 \\ & 49 \\ & 46 \end{aligned}$	$\begin{aligned} & 92 \\ & 82 \\ & 75 \\ & 66 \\ & 52 \\ & 53 \end{aligned}$	$\begin{aligned} & 89 \\ & 70 \\ & 65 \\ & 58 \\ & 53 \\ & 50 \end{aligned}$		$\begin{aligned} & 65 \\ & 47 \\ & 42 \\ & 36 \\ & 32 \\ & 31 \end{aligned}$	$\begin{aligned} & 67 \\ & 51 \\ & 45 \\ & 39 \\ & 35 \\ & 32 \end{aligned}$
RF5	$\begin{gathered} 9 \mathrm{kHz}-100 \mathrm{MHz} \\ 100 \mathrm{MHz}-1 \mathrm{GHz} \\ 1-2 \mathrm{GHz} \\ 2-4 \mathrm{GHz} \\ 4-6 \mathrm{GHz} \\ 6-8 \mathrm{GHz} \end{gathered}$	$\begin{aligned} & 92 \\ & 85 \\ & 70 \\ & 57 \\ & 48 \\ & 46 \end{aligned}$	$\begin{aligned} & 92 \\ & 77 \\ & 72 \\ & 64 \\ & 52 \\ & 51 \end{aligned}$	$\begin{aligned} & 89 \\ & 70 \\ & 64 \\ & 58 \\ & 53 \\ & 50 \end{aligned}$	$\begin{aligned} & 64 \\ & 45 \\ & 39 \\ & 34 \\ & 30 \\ & 27 \end{aligned}$		$\begin{aligned} & 64 \\ & 45 \\ & 40 \\ & 35 \\ & 29 \\ & 30 \end{aligned}$
RF6	$\begin{gathered} 9 \mathrm{kHz}-100 \mathrm{MHz} \\ 100 \mathrm{MHz}-1 \mathrm{GHz} \\ 1-2 \mathrm{GHz} \\ 2-4 \mathrm{GHz} \\ 4-6 \mathrm{GHz} \\ 6-8 \mathrm{GHz} \end{gathered}$	$\begin{aligned} & 87 \\ & 69 \\ & 67 \\ & 56 \\ & 46 \\ & 42 \end{aligned}$	$\begin{aligned} & 91 \\ & 73 \\ & 67 \\ & 61 \\ & 49 \\ & 49 \end{aligned}$	$\begin{aligned} & 88 \\ & 69 \\ & 63 \\ & 57 \\ & 52 \\ & 49 \end{aligned}$	$\begin{aligned} & 67 \\ & 51 \\ & 45 \\ & 39 \\ & 34 \\ & 30 \end{aligned}$	$\begin{aligned} & 65 \\ & 47 \\ & 41 \\ & 35 \\ & 29 \\ & 29 \end{aligned}$	

Typical Performance Data

Figure 3-Figure 20 show the typical performance data at $+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}\left(\mathrm{Z}_{\mathrm{S}}=\mathrm{Z}_{\mathrm{L}}=50 \Omega\right)$, unless otherwise specified.

Figure 3 • Insertion Loss vs. Frequency (RFC-RFX)

Figure 4 - Insertion Loss vs. Frequency Over Temperature (RFC-RF1)

Figure 5 • Insertion Loss vs. Frequency Over $V_{D D}$ (RFC-RF1)

Figure 6 • RFC Port Return Loss vs. Frequency

Figure 7 - RFC Port Return Loss vs. Frequency Over Temperature (RF1 On)

Figure 8 - RFC Port Return Loss vs. Frequency Over VDD (RF1 On)

Figure 9 - Active Port Return Loss vs. Frequency

Figure 10 • RF1 Active Port Return Loss vs. Frequency Over Temperature

Figure 11 • RF1 Active Port Return Loss vs. Frequency Over $V_{D D}$

Figure 12 • Terminated Port Return Loss vs. Frequency (RF1 On)

Figure 13 - RF2 Terminated Port Return Loss vs. Frequency Over Temperature (RF1 On)

Figure 14 - RF2 Terminated Port Return Loss vs. Frequency Over VDD (RF1 On)

Figure 15 • Isolation vs. Frequency Over Temperature (RFX-RFXRF1-RF2, RF1 On)

Figure 16 : Isolation vs. Frequency Over $V_{D D}$ (RFX-RFXRF1-RF2, RF1 On)

Figure 17 • Isolation vs. Frequency Over Temperature (RFC-RF2, RF1 On)

Figure 18 : Isolation vs. Frequency Over $V_{D D}$ (RFC-RF2, RF1 On)

Figure 19 • IIP2 vs. RF Port Measured

Figure 20 - IIP3 vs. RF Port Measured
\qquad

Evaluation Kit

The high-throw count RF switch evaluation kit (EVK) includes hardware required to control and evaluate the functionality of the high-throw count switches. The high-throw count RF switch evaluation software can be downloaded at www.psemi.com and requires a PC running Windows ${ }^{\circledR}$ operating system to control the USB interface board. Refer to the Multi-throw Count RF Switch Evaluation Kit (EVK) User's Manual for more information.

Figure 21 • Evaluation Board Layout for PE42562

Pin Information

This section provides pinout information for the PE42562. Figure 22 shows the pin map of this device for the available package. Table 8 provides a description for each pin.

Figure 22 • Pin Configuration (Top View)

Table 8 • Pin Descriptions for PE42562

Pin No.	Pin Name	Description
1	LS	Logic Select-used to determine the definition for V1, V2 and V3 pins
2	RF2 ${ }^{(1)}$	RF port 2
$\begin{gathered} 3,5,6 \\ 12-14,16 \\ 18,21,23 \end{gathered}$	GND	Ground
4	RF3 ${ }^{(1)}$	RF port 3
7	$\mathrm{V}_{\text {SS_EXT }}{ }^{(2)}$	External $\mathrm{V}_{\text {SS }}$ negative voltage control
8	$V_{D D}$	Supply voltage (nominal 3.3V)
9	V1	Digital control logic input 1
10	V2	Digital control logic input 2
11	V3	Digital control logic input 3
15	RF4 ${ }^{(1)}$	RF port 4
17	RF5 ${ }^{(1)}$	RF port 5
19	RF6 ${ }^{(1)}$	RF port 6
20	$N C^{(3)}$	No connect
22	RFC ${ }^{(1)}$	RF common port
24	RF1 ${ }^{(1)}$	RF port 1
Pad	GND	Exposed pad: ground for proper operation

Notes:

1) RF pins $2,4,15,17,19,22$ and 24 must be at 0 VDC. The RF pins do not require DC blocking capacitors for proper operation if the 0 VDC requirement is met.
2) Use $V_{S S}$ EXT (pin 7) to bypass and disable internal negative voltage generator. Connect $\mathrm{V}_{\text {SS_EXT }}$ (pin 7) to GND ($\mathrm{V}_{\text {SS_EXT }}=0 \mathrm{~V}$) to enable internal negative voltage generator.
3) Pin 20 (NC) can be connected to GND or left not connected externally.

Packaging Information

This section provides packaging data including the moisture sensitivity level, package drawing, package marking and tape-and-reel information.

Moisture Sensitivity Level

The moisture sensitivity level rating for the PE42562 in the 24 -lead $4 \times 4 \times 0.85 \mathrm{~mm}$ QFN package is MSL1.

Package Drawing

Figure 23 - Package Mechanical Drawing for 24-lead $4 \times 4 \times 0.85 \mathrm{~mm}$ QFN

Top-Marking Specification

Figure 24 • Package Marking Specifications for PE42562

Tape and Reel Specification

Figure 25 : Tape and Reel Specifications for 24 -lead $4 \times 4 \times 0.85 \mathrm{~mm}$ QFN

A0	4.35
B0	4.35
K0	1.10
D0	$1.50+0.10 /-0.00$
D1	1.50 min
E	1.75 ± 0.10
F	5.50 ± 0.05
P0	4.00
P1	8.00
P2	2.00 ± 0.05
T	0.30 ± 0.05
W0	12.00 ± 0.30

Notes:

1. 10 Sprocket hole pitch cumulative tolerance ± 0.2
2. Camber in compliance with EIA 481
3. Pocket position relative to sprocket hole measured as true position of pocket, not pocket hole

Dimensions are in millimeters unless otherwise specified

Device Orientation in Tape

Ordering Information

Table 9 lists the available ordering codes for the PE42562 as well as available shipping methods.
Table 9 : Order Codes for PE42562

Order Codes	Description	Packaging	Shipping Method
PE42562A-X	PE42562 SP6T RF switch	Green 24-lead $4 \times 4 \mathrm{~mm}$ QFN	500 units/T\&R
EK42562-02	PE42562 Evaluation kit	Evaluation kit	1/Box

Document Categories

Advance Information

The product is in a formative or design stage. The datasheet contains design target specifications for product development. Specifications and features may change in any manner without notice.

Preliminary Specification

The datasheet contains preliminary data. Additional data may be added at a later date. pSemi reserves the right to change specifications at any time without notice in order to supply the best possible product.

Product Specification

The datasheet contains final data. In the event pSemi decides to change the specifications, pSemi will notify customers of the intended changes by issuing a CNF (Customer Notification Form).

Product Brief

This document contains a shortened version of the datasheet. For the full datasheet, contact sales@psemi.com.

Sales Contact

For additional information, contact Sales at sales@psemi.com.

Disclaimers

The information in this document is believed to be reliable. However, pSemi assumes no liability for the use of this information. Use shall be entirely at the user's own risk. No patent rights or licenses to any circuits described in this document are implied or granted to any third party. pSemi's products are not designed or intended for use in devices or systems intended for surgical implant, or in other applications intended to support or sustain life, or in any application in which the failure of the pSemi product could create a situation in which personal injury or death might occur. pSemi assumes no liability for damages, including consequential or incidental damages, arising out of the use of its products in such applications.

Patent Statement

pSemi products are protected under one or more of the following U.S. patents: patents.psemi.com

Copyright and Trademark

©2017-2021, pSemi Corporation. All rights reserved. The Peregrine Semiconductor name, Peregrine Semiconductor logo and UltraCMOS are registered trademarks and the pSemi name, pSemi logo, HaRP and DuNE are trademarks of pSemi Corporation in the U.S. and other countries.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery \& Lifecycle Information:
pSemi:
EK4256-01 PE42562A-X

