74LVC257

FEATURES

- Wide supply voltage range of 1.2 V to 3.6 V
- In accordance with JEDEC standard no. 8-1A.
- Inputs accept voltages upto
 5.5 V
- CMOS low power consumption
- Direct interface with TTL levels
- Output drive capability 50 Ω transmission lines @ 85 °C
- Non-inverting data path

DESCRIPTION

The 74LVC257 is a high-performance, low-power, low-voltage, Si-gate CMOS device and superior to most advanced CMOS compatible TTL families.

The 74LVC257 is a quad 2-input multiplexer with 3-state outputs, which select 4 bits of data from two sources under the control of a common data select input (S). The data inputs from source 0 (110 to 410) are selected when input S is LOW and the data inputs from source 1 (11, to 41,) are selected when S is HIGH. Data appears at the outputs (1Y to 4Y) in true (non-inverting) form from the selected inputs. The "257" is the logic implementation of a 4-pole, 2position switch, where the position of the switch is determined by the logic levels applied to S. The outputs are forced to a high impedance OFF-state when OE is

The logic equations for the outputs are:

 $1Y = \overline{OE} \cdot (1I_1 \cdot S + 1I_0 \cdot \overline{\underline{S}})$

HIGH.

 $2Y = \overline{OE} \cdot (2I_1 \cdot S + 2I_0 \cdot \overline{S})$

 $3Y = \overline{OE} \cdot (3I_1 \cdot S + 3I_0 \cdot \overline{S})$

 $4Y = \overline{OE} \cdot (4I_1 \cdot S + 4I_0 \cdot \overline{S})$

The "257" is identical to the "258" but has non-inverting (true) outputs.

QUICK REFERENCE DATA

GND = 0 V; $T_{amb} = 25^{\circ}C$; $t_i = t_i \le 2.5 \text{ ns}$

SYMBOL	PARAMETER	CONDITIONS	TYPICAL	UNIT
t _{PHL} /t _{PLH}	propagation delay nl _o , nl ₁ to nY S to nY	C _L = 50 pF V _{cc} = 3.3 V	4.0 4.5	ns
Cı	input capacitance		5.0	pF
C _{PD}	power dissipation capacitance per gate	notes 1 and 2	30	рF

Notes to the quick reference data

- 1. C_{PD} is used to determine the dynamic power dissipation (P_D in μ W) $P_D = C_{PD} \times V_{CC}^2 \times f_i + \Sigma (C_L \times V_{CC}^2 \times f_o)$ where:
 - f_i = input frequency in MHz; C_L = output load capacity in pF;
 - f_o = output frequency in MHz; V_{cc} = supply voltage in V;
 - $\Sigma (C_L \times V_{CC}^2 \times f_o) = \text{sum of the outputs.}$
- 2. The condition is $V_1 = GND$ to V_{CC}

ORDERING AND PACKAGE INFORMATION

TYPE NUMBER	PACKAGES					
THE NOWBER	PINS	PACKAGE	MATERIAL	CODE		
74LVC257D	16	SO	plastic	SO16/SOT109A		
74LVC257DB	16	SSOP	plastic	SSOP16/SOT338M		
74LVC257PW	16	TSSOP	plastic	TSSOP16/SOT403		

PINNING

PIN NO.	SYMBOL	NAME AND FUNCTION				
1	S	common data select input				
2, 5, 11, 14	11 ₀ to 41 ₀	data inputs from source 0				
3, 6, 10, 13	11, to 41,	data inputs from source 1				
4, 7, 9, 12	1Y to 4Y	3-state multiplexer outputs				
8	GND	ground (0 V)				
15	ŌĒ	3-state output enable input (active LOW)				
16	V _{cc}	positive supply voltage				

74LVC257

74LVC257

FUNCTION TABLE

INPUTS				OUTPUT		
ŌĒ	S	nlo	nl ₁	nY		
Н	X	Х	Х	Z		
L	н	x	L	L		
L	Н	X	Н	lн		
L	L	L	Х	l L		
L	L	Н	X	н		

H = HIGH voltage levelL = LOW voltage level

X = Don't care

Z = high impedance OFF-state

DC CHARACTERISTICS FOR 74LVC257

For the DC characteristics see chapter "LVC family characteristics", section "Family specifications".

AC CHARACTERISTICS FOR 74LVC257

GND = 0 V; $t_i = t_i \le 2.5 \text{ ns}$; $C_i = 50 \text{ pF}$

SYMBOL	PARAMETER	T _{amb} (°C) -40 to +85			UNIT	TEST CONDITIONS	
						V _{cc} (V)	WAVEFORMS
t _{PHL} /t _{PLH}	propagation delay nl ₀ to nY; nl ₁ to nY	MIN. - - -	TYP. - 4.8 4.0*	MAX. - 8.0 7.0	ns	1.2 2.7 3.0 to 3.6	Fig.6
t _{PHL} /t _{PLH}	propagation delay S to nY	- - -	5.2 4.5*	10.5 9.5	ns	1.2 2.7 3.0 to 3.6	Fig.6
t _{PZH} /t _{PZL}	3-state output enable time OE to nY	<u>-</u> -	- 5.2 4.5*	9.0 8.0	ns	1.2 2.7 3.0 to 3.6	Fig.7
t _{PHZ} /t _{PLZ}	3-state output disable time OE to nY	- -	 4.0 3.8*	7.0 6.0	ns	1.2 2.7 3.0 to 3.6	Fig.7

Notes: All typical values are measured at $T_{amb} = 25$ °C.

AC WAVEFORMS

nl_o, nl₁) to output (nY) propagation delays.

(3) V_Y = V_{OH} - 0.3 V at V_{CC} ≥ 2.7 V
 V_Y = V_{OH} - 0.1 · V_{CC} at V_{CC} < 2.7 V
 (4) V_{OL} and V_{OH} are the typical output voltage drop that occur with the output load.

Fig. 7 Waveforms showing the 3-state enable and disable times.

^{*} Typical values are measured at $V_{cc} = 3.3 \text{ V}$.

74LVC257

