HFBR-2412TCZ/2416TCZ

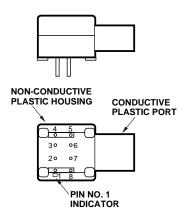
Conductive Port Option for Low Cost Miniature Link Components

Data Sheet

Description

The conductive port option for the Low Cost Miniature Link component family consists of a grounding path from the conductive port to four grounding pins as shown in the package outline drawing. Signal ground is separate from the four grounding pins to give the designer more flexibility. This option is available with all Threaded ST panel mount styled port receivers. Electrical/optical performance of the receivers is not affected by the conductive port. Refer to the HFBR-2412TCZ and HFBR-2416TCZ data sheets for more information.

Applications


Avago recommends that the designer use separate ground paths for the signal ground and the conductive port ground in order to minimize the effects of coupled noise on the receiver circuitry. If the designer notices that extreme noise is present on the system chassis, care should be taken to electrically isolate the conductive port from the chassis.

In the case of ESD, the conductive port option does not alleviate the need for system recovery procedures. A 15 kV ESD event entering through the port will not cause catastrophic failure for any HFBR-2412TCZ and HFBR-2416TCZ receivers, but may cause soft errors. The conductive port option can reduce the amount of soft errors due to ESD events, but does not guarantee error-free performance.

Features

- Significantly decreases effect of Electromagnetic Interference (EMI) on receiver sensitivity
- · Available with threaded ST styled port receivers
- Allows the designer to separate the signal and conductive port grounds

Package Outline

Pin	Function
1	Port Ground Pin
2	Part Dependent
3	Part Dependent
4	Port Ground Pin
5	Port Ground Pin
6	Part Dependent
7	Part Dependent
8	Port Ground Pin

Reliability Information

Low Cost Miniature Link components with the Conductive Port Option are as reliable as standard HFBR-2412TCZ and HFBR-2416TCZ components. The following tests were performed to verify the mechanical reliability of this option.

Ordering Information

HFBR-2412TCZ-820 nm Receiver, ST housed, 5 MBd, TTL Output, Conductive Port.

HFBR-2416TCZ-820 nm Receiver, ST housed, 125 MHz, Analog Output, Conductive Port.

Mechanical and Environmental Tests[1]

Test	MIL-STD-883/ Other Reference	Test Conditions	Units Tested	Total Failed
	1010	-55°C to +125°C	70	0
Temperature Cycling	Condition B	15 min. dwell/5 min. transfer	/0	0
	Condition b	100 cycles		
Thermal Shock	1011	-55°C to +125°C	45	0
	Condition B	5 min, dwell/10 sec. transfer		
	oonamon B	500 cycles		
High temp. Storage	1008	T _A = 125°C	50	0
	Condition B	1000 hours		
Mechanical Shock	2002	1500 g/0.5 ms	40	0
	Condition B	5 impacts each axis		
Seal Dye Penetrant	1014	45 psi, 10 hours	15	0
(Zyglo)	Condition D	No leakage into microelectronic cavity		
Solderability	2003	245°C	10	0
Resistance to	2015	3 one min. immersion brush	13	0
Solvents		after solvent		
Chemical Resistance	_	5 minutes in Acetone, Methanol,	12	0
		Boiling Water		
Temperature-	-	T _A = 85°C, RH = 85%	30	0
Humidity		Biased, 500 hours		
Lead Integrity	2004	8 oz. wt. to each lead tested for	16	0
	Condition B2	three 90° arcs of the case		
Electrostatic	IEC-801-2	Direct contact discharge to port,	16	0
Discharge (ESD)		0-15 kV ^[2]		

Notes

- 1. Tests were performed on ST products with the conductive port option.
- 2. Avago has previously used an air discharge method to measure ESD; results using this method vary with air temperature and humidity.

 The direct contact discharge method is perferred due to better repeatability and conformance with IEC procedures. ESD immunity measured with the air discharge method is generally higher than with the direct contact discharge method.

