
PIC32MX
PIC32MX Flash Programming Specification
1.0 DEVICE OVERVIEW
This document defines the programming specification
for the PIC32MX family of 32-bit microcontrollers. This
programming specification is designed to guide
developers of external programmer tools. Customers
who are developing applications for PIC32MX devices
should use development tools that already provide
support for device programming.

2.0 PROGRAMMING OVERVIEW
All PIC32MX devices can be programmed via two
primary methods – self-programming and external tool
programming.

The self-programming method requires that the target
device already contains executable code with the logic
necessary to complete the programming sequence.

The external tool programming method does not
require any code in the target device – it can program
all target devices with or without any executable code.

This document describes the external tool
programming method. Refer to the individual sections
of the “PIC32 Family Reference Manual” and the spe-
cific device data sheet for more information about using
the self-programming method.

An external tool programming setup consists of an
external programmer tool and a target PIC32MX
device. Figure 2-1 illustrates the block diagram view of
the typical programming setup. The programmer tool is
responsible for executing necessary programming
steps and completing the programming operation.

FIGURE 2-1: PROGRAMMING SYSTEM
SETUP

All PIC32MX devices provide two physical interfaces to
the external programmer tool:

• 2-wire In-Circuit Serial Programming™ (ICSP™)
• 4-wire Joint Test Action Group (JTAG)

See Section 4.0 “Connecting to the Device” for
more information.

Either of these methods may use a downloadable
Programming Executive (PE). The PE executes from
the target device RAM and hides device programming
details from the programmer. It also removes overhead
associated with data transfer and improves overall data
throughput. Microchip has developed a PE that is
available for use with any external programmer.

See Section 16.0 “The Programming Executive” for
more information.

Section 3.0 “Programming Steps” describes high-
level programming steps, followed by a brief explana-
tion of each step. Detailed explanations are available in
corresponding sections of this document.

More details on programming commands, EJTAG, and
DC specs are available in the following sections:

• Section 18.0 “Configuration Memory and
Device ID”

• Section 19.0 “TAP Controllers”
• Section 20.0 “AC/DC Characteristics and

Timing Requirements”

2.1 Assumptions
Both 2-wire and 4-wire interfaces use the EJTAG pro-
tocol to exchange data with the programmer. While this
document provides a working description of this proto-
col as needed, advanced users are advised to refer to
the “EJTAG Specification” (MD00047), which is
available from MIPS Technologies, Inc.Target PIC32MX Device

CPU

On-Chip Memory

External
Programmer
© 2007-2011 Microchip Technology Inc. DS61145J-page 1

http://www.mips.com
http://www.mips.com

PIC32MX

3.0 PROGRAMMING STEPS
All tool programmers must perform a common set of
steps, regardless of the actual method being used.
Figure 3-1 shows the set of steps to program PIC32MX
devices.

FIGURE 3-1: PROGRAMMING FLOW

The following sequence lists the steps, with a brief
explanation of each step. More detailed information
about the steps is available in the following sections.
1. Connect to the Target Device.

To ensure successful programming, all required
pins must be connected to appropriate signals.
See Section 4.0 “Connecting to the Device”
in this document for more information.

2. Place the Target Device in Programming Mode.

For 2-wire programming methods, the target
device must be placed in a special programming
mode (Enhanced ICSP™) before executing any
other steps.

See Section 7.0 “Entering Programming
Mode” for more information.

3. Check the Status of the Device.

Step 3 checks the status of the device to ensure
it is ready to receive information from the
programmer.

See Section 8.0 “Check Device Status” for
more information.

4. Erase the Target Device.

If the target memory block in the device is not
blank, or if the device is code-protected, an
erase step must be performed before
programming any new data.

See Section 9.0 “Erasing the Device” for
more information.

5. Enter Programming Mode.

Step 5 verifies that the device is not code-
protected and boots the TAP controller to start
sending and receiving data to and from the
PIC32MX CPU.

See Section 10.0 “Entering Serial Execution
Mode” for more information.

6. Download the Programming Executive (PE).

The PE is a small block of executable code that
is downloaded into the RAM of the target device.
It will receive and program the actual data.

See Section 11.0 “Downloading the
Programming Executive (PE)” for more
information.

7. Download the Block of Data to Program.

All methods, with or without the PE, must down-
load the desired programming data into a block
of memory in RAM.
See Section 12.0 “Downloading a Data
Block” for more information.

Done

Exit Programming Mode

Verify Device

Done

Initiate Flash Write

Download a Data Block

Download the PE
(Optional)

Enter Serial Exec Mode

Erase Device

Check Device Status

Start

Enter Enhanced ICSP™
(Only required for 2-wire)

No

Yes

Note: For the 4-wire programming methods,
Step 2 is not required.

Note: If the programming method being used
does not require the PE, Step 6 is not
required.
DS61145J-page 2 © 2007-2011 Microchip Technology Inc.

PIC32MX

8. Initiate Flash Write.

After downloading each block of data into RAM,
the programming sequence must be started to
program it into the target device’s Flash
memory.

See Section 13.0 “Initiating a Flash Row
Write” for more information.

9. Repeat Steps 7 and 8 until all data blocks are
downloaded and programmed.

10. Verify the program memory.

After all programming data and Configuration
bits are programmed, the target device memory
should be read back and verified for the
matching content.

See Section 14.0 “Verify Device Memory” for
more information.

11. Exit the Programming mode.

The newly programmed data is not effective until
either power is removed and reapplied to the
target device or an exit programming sequence
is performed.

See Section 15.0 “Exiting Programming
Mode” for more information.
© 2007-2011 Microchip Technology Inc. DS61145J-page 3

PIC32MX
4.0 CONNECTING TO THE DEVICE
The PIC32MX family provides two possible physical
interfaces for connecting to and programming the
memory contents (Figure 4-1). For all programming
interfaces, the target device must be properly powered
and all required signals must be connected.

FIGURE 4-1: PROGRAMMING
INTERFACES

4.1 4-Wire Interface
One possible interface is the 4-wire JTAG (IEEE
1149.1) port. Table 4-1 lists the required pin connec-
tions. This interface uses the following four communi-
cation lines to transfer data to and from the PIC32MX
device being programmed:

• TCK – Test Clock Input
• TMS – Test Mode Select Input
• TDI – Test Data Input
• TDO – Test Data Output

These signals are described in the following four sec-
tions. Refer to the specific device data sheet for the
connection of the signals to the chip pins.

4.1.1 TEST CLOCK INPUT (TCK)
TCK is the clock that controls the updating of the TAP
controller and the shifting of data through the Instruc-
tion or selected Data register(s). TCK is independent of
the processor clock with respect to both frequency and
phase.

4.1.2 TEST MODE SELECT INPUT (TMS)
TMS is the control signal for the TAP controller. This
signal is sampled on the rising edge of TCK.

4.1.3 TEST DATA INPUT (TDI)
TDI is the test data input to the Instruction or selected
Data register(s). This signal is sampled on the rising
edge of TCK for some TAP controller states.

4.1.4 TEST DATA OUTPUT (TDO)
TDO is the test data output from the Instruction or Data
register(s). This signal changes on the falling edge of
TCK. TDO is only driven when data is shifted out,
otherwise the TDO is tri-stated.

TABLE 4-1: 4-WIRE INTERFACE PINS

Programmer

2-Wire
ICSP™

OR

4-Wire
JTAG

+ MCLR, VDD, VSS

PIC32

Device Pin Name Pin Type Pin Description

MCLR I Programming Enable
ENVREG I Enable for On-Chip Voltage Regulator
VDD and AVDD(1) P Power Supply
VSS and AVSS(1) P Ground
VCAP P CPU logic filter capacitor connection
TDI I Test Data In
TDO O Test Data Out
TCK I Test Clock
TMS I Test Mode State
Legend: I = Input O = Output P = Power
Note 1: All power supply and ground pins must be connected, including analog supplies (AVDD) and ground

(AVSS).
DS61145J-page 4 © 2007-2011 Microchip Technology Inc.

PIC32MX

4.2 2-Wire Interface
Another possible interface is the 2-wire ICSP port.
Table 4-2 lists the required pin connections. This inter-
face uses the following 2 communication lines to trans-
fer data to and from the PIC32MX device being
programmed:

• PGCx – Serial Program Clock
• PGDx – Serial Program Data

These signals are described in the following two
sections. Refer to the specific device data sheet for the
connection of the signals to the chip pins.

4.2.1 SERIAL PROGRAM CLOCK (PGCX)
PGCx is the clock that controls the updating of the TAP
controller and the shifting of data through the Instruc-
tion or selected Data register(s). PGCx is independent
of the processor clock, with respect to both frequency
and phase.

4.2.2 SERIAL PROGRAM DATA (PGDX)
PGDx is the data input/output to the Instruction or
selected Data Register(s), it is also the control signal
for the TAP controller. This signal is sampled on the
falling edge of PGC for some TAP controller states.

4.3 Power Requirements
All devices in the PIC32MX family are dual voltage
supply designs: one supply for the core and peripherals
and another for the I/O pins. Some devices contain an
on-chip regulator to eliminate the need for two external
voltage supplies.

All of the PIC32MX devices power their core digital
logic at a nominal 1.8V. This may create an issue for
designs that are required to operate at a higher typical
voltage, such as 3.3V. To simplify system design, all
devices in the PIC32MX family incorporate an on-chip
regulator that allows the device to run its core logic from
VDD.

The regulator provides power to the core from the other
VDD pins. A low-ESR capacitor (e.g., a tantalum
capacitor) must be connected to the VCAP pin
(Figure 4-2). This helps to maintain the stability of the
regulator. The specifications for core voltage and
capacitance are listed in Section 20.0 “AC/DC
Characteristics and Timing Requirements”.

FIGURE 4-2: CONNECTIONS FOR THE
ON-CHIP REGULATOR

TABLE 4-2: 2-WIRE INTERFACE PINS

VDD

ENVREG

VCAP

VSS

PIC32MX
3.3V(1)1.8V(1)

VDD

ENVREG

VCAP

VSS

PIC32MX

CEFC

3.3V

Regulator Enabled

Regulator Disabled

(10 μF typ)

Note 1: These are typical operating voltages. Refer to
Section 20.0 “AC/DC Characteristics and Tim-
ing Requirements” for the full operating ranges
of VDD and VCAP.

(ENVREG tied to VDD)

(ENVREG tied to ground)

Device
Pin Name

Programmer
Pin Name Pin Type Pin Description

MCLR MCLR P Programming Enable
ENVREG N/A I Enable for On-Chip Voltage Regulator
VDD and AVDD(1) VDD P Power Supply
VSS and AVSS(1) VSS P Ground
VCAP N/A P CPU logic filter capacitor connection
PGC1 PGC I Primary Programming Pin Pair: Serial Clock
PGD1 PGD I/O Primary Programming Pin Pair: Serial Data
PGC2 PGC I Secondary Programming Pin Pair: Serial Clock
PGD2 PGD I/O Secondary Programming Pin Pair: Serial Data
Legend: I = Input O = Output P = Power
Note 1: All power supply and ground pins must be connected, including analog supplies (AVDD) and ground (AVSS).
© 2007-2011 Microchip Technology Inc. DS61145J-page 5

PIC32MX
5.0 EJTAG vs. ICSP
Programming is accomplished via the EJTAG module
in the CPU core. EJTAG is connected to either the full
set of JTAG pins, or a reduced 2-wire to 4-wire EJTAG
interface. In both modes, programming of the PIC32MX
Flash memory is accomplished through the ETAP
controller. The TAP Controller uses the TMS pin to
determine if Instruction or Data registers should be
accessed in the shift path between TDI and TDO (see
Figure 5-1).

FIGURE 5-1: TAP CONTROLLER

The basic concept of EJTAG that is used for program-
ming is the use of a special memory area called
DMSEG (0xFF200000 to 0xFF2FFFFF), which is only
available when the processor is running in Debug
mode. All instructions are serially shifted into an inter-
nal buffer, then loaded into the Instruction register and
executed by the CPU. Instructions are fed through the
ETAP state machine in 32-bit groups.

FIGURE 5-2: BASIC PIC32MX
PROGRAMMING BLOCK

• ETAP
- Serially feeds instructions and data into CPU.

• MTAP
- In addition to the EJTAG TAP (ETAP) control-

ler, the PIC32MX device uses a second
proprietary TAP controller for additional oper-
ations. The Microchip TAP (MTAP) controller
supports two instructions relevant to pro-
gramming: MTAP_COMMAND and TAP switch
Instructions. See Table 19-1 for a complete
list of Instructions. The MTAP_COMMAND
instruction provides a mechanism for a JTAG
probe to send commands to the device via its
Data register.

- The programmer sends commands by
shifting in the MTAP_COMMAND instruction via
the SendCommand pseudo operation, and
then sending MTAP_COMMAND DR
commands via XferData pseudo operation
(see Table 19-2 for specific commands).

- The probe does not need to issue an
MTAP_COMMAND instruction for every
command shifted into the Data register.

• 2-Wire to 4-Wire
- Converts 2-wire ICSP interface to 4-wire

JTAG.
• CPU

- The CPU executes instructions at 8 MHz via
the internal oscillator.

• Flash Controller
- The Flash Controller controls erasing and

programming of the Flash memory on the
device.

• Flash Memory
- The PIC32MX device Flash memory is

divided into two logical Flash partitions con-
sisting of the Boot Flash Memory (BFM) and
Program Flash Memory (PFM). The Boot
Flash Memory map extends from
0x1FC00000 to 0x1FC02FFF, and the
Program Flash Memory map extends from
0x1D000000 to 0x1D07FFFF. Code storage
begins with the BFM and supports up to
12 Kbytes. It continues with the PFM, which
supports up to 512 Kbytes. Table shows the
program memory size of each device variant.
Each erase block, or page, contains 1K
instructions (4 Kbytes) or 256 instructions (1
Kbytes) and each program block, or row, con-
tains 128 instructions (512 bytes) or 32
instructions (128 bytes).

- The last four implemented program memory
locations in BFM are reserved for the device
Configuration registers.

TMS

TCK

TDO
TDI

Tap Controller

Instruction, Data and Control
Registers

Common
VDD

VSS

MCLR

TMS

TCK

TDI

TDO

OR

PGC

PGD

ETAP CPU

MTAP

2-wire

Flash

Flash
to

4-wire

Cntlr

Mem
DS61145J-page 6 © 2007-2011 Microchip Technology Inc.

PIC32MX
TABLE 5-1: CODE MEMORY SIZE

PIC32MX Device
Row Size

(Instr.
Words)

Page Size
(Instr.

Words)

Boot Flash Memory Address
(Bytes)

Program Flash Memory Address
(Bytes)

PIC32MX110F016B 32 256 0x1FC00000-0x1FC00BFF (3 KB) 0x1D000000-0x1D003FFF (16 KB)
PIC32MX110F016C 32 256 0x1FC00000-0x1FC00BFF (3 KB) 0x1D000000-0x1D003FFF (16 KB)
PIC32MX110F016D 32 256 0x1FC00000-0x1FC00BFF (3 KB) 0x1D000000-0x1D003FFF (16 KB)
PIC32MX210F016B 32 256 0x1FC00000-0x1FC00BFF (3 KB) 0x1D000000-0x1D003FFF (16 KB)
PIC32MX210F016C 32 256 0x1FC00000-0x1FC00BFF (3 KB) 0x1D000000-0x1D003FFF (16 KB)
PIC32MX210F016D 32 256 0x1FC00000-0x1FC00BFF (3 KB) 0x1D000000-0x1D003FFF (16 KB)

PIC32MX120F032B 32 256 0x1FC00000-0x1FC00BFF (3 KB) 0x1D000000-0x1D007FFF (32 KB)
PIC32MX120F032C 32 256 0x1FC00000-0x1FC00BFF (3 KB) 0x1D000000-0x1D007FFF (32 KB)
PIC32MX120F032D 32 256 0x1FC00000-0x1FC00BFF (3 KB) 0x1D000000-0x1D007FFF (32 KB)
PIC32MX220F032B 32 256 0x1FC00000-0x1FC00BFF (3 KB) 0x1D000000-0x1D007FFF (32 KB)
PIC32MX220F032C 32 256 0x1FC00000-0x1FC00BFF (3 KB) 0x1D000000-0x1D007FFF (32 KB)
PIC32MX220F032D 32 256 0x1FC00000-0x1FC00BFF (3 KB) 0x1D000000-0x1D007FFF (32 KB)
PIC32MX320F032H 128 1024 0x1FC00000-0x1FC02FFF (12 KB) 0x1D000000-0x1D007FFF (32 KB)

PIC32MX130F064B 32 256 0x1FC00000-0x1FC00FFF (3 KB) 0x1D000000-0x1D00FFFF (64 KB)
PIC32MX130F064C 32 256 0x1FC00000-0x1FC00FFF (3 KB) 0x1D000000-0x1D00FFFF (64 KB)
PIC32MX130F064D 32 256 0x1FC00000-0x1FC00FFF (3 KB) 0x1D000000-0x1D00FFFF (64 KB)
PIC32MX230F064B 32 256 0x1FC00000-0x1FC00FFF (3 KB) 0x1D000000-0x1D00FFFF (64 KB)
PIC32MX230F064C 32 256 0x1FC00000-0x1FC00FFF (3 KB) 0x1D000000-0x1D00FFFF (64 KB)
PIC32MX230F064D 32 256 0x1FC00000-0x1FC00FFF (3 KB) 0x1D000000-0x1D00FFFF (64 KB)
PIC32MX320F064H 128 1024 0x1FC00000-0x1FC02FFF (12 KB) 0x1D000000-0x1D00FFFF (64 KB)
PIC32MX534F064H 128 1024 0x1FC00000-0x1FC02FFF (12 KB) 0x1D000000-0x1D00FFFF (64 KB)
PIC32MX564F064H 128 1024 0x1FC00000-0x1FC02FFF (12 KB) 0x1D000000-0x1D00FFFF (64 KB)
PIC32MX664F064H 128 1024 0x1FC00000-0x1FC02FFF (12 KB) 0x1D000000-0x1D00FFFF (64 KB)
PIC32MX534F064L 128 1024 0x1FC00000-0x1FC02FFF (12 KB) 0x1D000000-0x1D00FFFF (64 KB)
PIC32MX564F064L 128 1024 0x1FC00000-0x1FC02FFF (12 KB) 0x1D000000-0x1D00FFFF (64 KB)
PIC32MX664F064L 128 1024 0x1FC00000-0x1FC02FFF (12 KB) 0x1D000000-0x1D00FFFF (64 KB)

PIC32MX150F128B 32 256 0x1FC00000-0x1FC00FFF (3 KB) 0x1D000000-0x1D01FFFF (128 KB)
PIC32MX150F128C 32 256 0x1FC00000-0x1FC00FFF (3 KB) 0x1D000000-0x1D01FFFF (128 KB)
PIC32MX150F128D 32 256 0x1FC00000-0x1FC00FFF (3 KB) 0x1D000000-0x1D01FFFF (128 KB)
PIC32MX250F128B 32 256 0x1FC00000-0x1FC00FFF (3 KB) 0x1D000000-0x1D01FFFF (128 KB)
PIC32MX250F128C 32 256 0x1FC00000-0x1FC00FFF (3 KB) 0x1D000000-0x1D01FFFF (128 KB)
PIC32MX250F128D 32 256 0x1FC00000-0x1FC00FFF (3 KB) 0x1D000000-0x1D01FFFF (128 KB)
PIC32MX320F128H 128 1024 0x1FC00000-0x1FC02FFF (12 KB) 0x1D000000-0x1D01FFFF (128 KB)
PIC32MX564F128H 128 1024 0x1FC00000-0x1FC02FFF (12 KB) 0x1D000000-0x1D01FFFF (128 KB)
PIC32MX664F128H 128 1024 0x1FC00000-0x1FC02FFF (12 KB) 0x1D000000-0x1D01FFFF (128 KB)
PIC32MX764F128H 128 1024 0x1FC00000-0x1FC02FFF (12 KB) 0x1D000000-0x1D01FFFF (128 KB)
PIC32MX320F128L 128 1024 0x1FC00000-0x1FC02FFF (12 KB) 0x1D000000-0x1D01FFFF (128 KB)
PIC32MX564F128L 128 1024 0x1FC00000-0x1FC02FFF (12 KB) 0x1D000000-0x1D01FFFF (128 KB)
PIC32MX664F128L 128 1024 0x1FC00000-0x1FC02FFF (12 KB) 0x1D000000-0x1D01FFFF (128 KB)
PIC32MX764F128L 128 1024 0x1FC00000-0x1FC02FFF (12 KB) 0x1D000000-0x1D01FFFF (128 KB)
© 2007-2011 Microchip Technology Inc. DS61145J-page 7

PIC32MX
PIC32MX340F256H 128 1024 0x1FC00000-0x1FC02FFF (12 KB) 0x1D000000-0x1D03FFFF (256 KB)
PIC32MX575F256H 128 1024 0x1FC00000-0x1FC02FFF (12 KB) 0x1D000000-0x1D03FFFF (256 KB)
PIC32MX675F256H 128 1024 0x1FC00000-0x1FC02FFF (12 KB) 0x1D000000-0x1D03FFFF (256 KB)
PIC32MX775F256H 128 1024 0x1FC00000-0x1FC02FFF (12 KB) 0x1D000000-0x1D03FFFF (256 KB)
PIC32MX360F256L 128 1024 0x1FC00000-0x1FC02FFF (12 KB) 0x1D000000-0x1D03FFFF (256 KB)
PIC32MX575F256L 128 1024 0x1FC00000-0x1FC02FFF (12 KB) 0x1D000000-0x1D03FFFF (256 KB)
PIC32MX675F256L 128 1024 0x1FC00000-0x1FC02FFF (12 KB) 0x1D000000-0x1D03FFFF (256 KB)
PIC32MX775F256L 128 1024 0x1FC00000-0x1FC02FFF (12 KB) 0x1D000000-0x1D03FFFF (256 KB)

PIC32MX575F512H 128 1024 0x1FC00000-0x1FC02FFF (12 KB) 0x1D000000-0x1D07FFFF (512 KB)
PIC32MX675F512H 128 1024 0x1FC00000-0x1FC02FFF (12 KB) 0x1D000000-0x1D07FFFF (512 KB)
PIC32MX695F512H 128 1024 0x1FC00000-0x1FC02FFF (12 KB) 0x1D000000-0x1D07FFFF (512 KB)
PIC32MX775F512H 128 1024 0x1FC00000-0x1FC02FFF (12 KB) 0x1D000000-0x1D07FFFF (512 KB)
PIC32MX795F512H 128 1024 0x1FC00000-0x1FC02FFF (12 KB) 0x1D000000-0x1D07FFFF (512 KB)
PIC32MX360F512L 128 1024 0x1FC00000-0x1FC02FFF (12 KB) 0x1D000000-0x1D07FFFF (512 KB)
PIC32MX575F512L 128 1024 0x1FC00000-0x1FC02FFF (12 KB) 0x1D000000-0x1D07FFFF (512 KB)
PIC32MX675F512L 128 1024 0x1FC00000-0x1FC02FFF (12 KB) 0x1D000000-0x1D07FFFF (512 KB)
PIC32MX695F512L 128 1024 0x1FC00000-0x1FC02FFF (12 KB) 0x1D000000-0x1D07FFFF (512 KB)
PIC32MX775F512L 128 1024 0x1FC00000-0x1FC02FFF (12 KB) 0x1D000000-0x1D07FFFF (512 KB)
PIC32MX795F512L 128 1024 0x1FC00000-0x1FC02FFF (12 KB) 0x1D000000-0x1D07FFFF (512 KB)

TABLE 5-1: CODE MEMORY SIZE (CONTINUED)

PIC32MX Device
Row Size

(Instr.
Words)

Page Size
(Instr.

Words)

Boot Flash Memory Address
(Bytes)

Program Flash Memory Address
(Bytes)
DS61145J-page 8 © 2007-2011 Microchip Technology Inc.

PIC32MX

5.1 4-Wire JTAG Details
The 4-wire interface uses standard JTAG (IEEE
1149.1-2001) interface signals.

• TCK: Test Clock – drives data in/out
• TMS: Test Mode Select – selects operational mode
• TDI: Test Data In – data into the device
• TDO: Test Data Out – data out of the device

Since only one data line is available, the protocol is
necessarily serial (like SPI). The clock input is at the
TCK pin. Configuration is performed by manipulating a
state machine bit by bit through the TMS pin. One bit of
data is transferred in and out per TCK clock pulse at the
TDI and TDO pins, respectively. Different instruction
modes can be loaded to read the chip ID or manipulate
chip functions.

Data presented to TDI must be valid for a chip-specific
setup time before, and hold time, after the rising edge
of TCK. TDO data is valid for a chip-specific time after
the falling edge of TCK (refer to Figure 5-3).

FIGURE 5-3: 4-WIRE JTAG INTERFACE

TMS

TDI

TDO

iMSbiLSb

‘1’

TCK

oLSb oMSb

‘1’ ‘1’ ‘1’‘0’ ‘0’ ‘0’
© 2007-2011 Microchip Technology Inc. DS61145J-page 9

PIC32MX

5.2 2-Wire ICSP Details
In ICSP mode, the 2-wire ICSP signals are time
multiplexed into the 2-wire to 4-wire block. The 2-wire
to 4-wire block then converts the signals to look like a
4-wire JTAG port to the TAP controller.

There are two possible modes of operation:

• 4-Phase ICSP
• 2-Phase ICSP

5.2.1 4-PHASE ICSP
In 4-Phase ICSP mode, the TDI, TDO and TMS device
pins are multiplexed onto PGD in 4 clocks (see
Figure 5-4). The Least Significant bit (LSb) is shifted
first; and TDI and TMS are sampled on the falling edge

of PGC, while TDO is driven on the falling edge of PGC.
4-Phase mode is used for both read and write data
transfers.

5.2.2 2-PHASE ICSP
In 2-Phase ICSP mode, the TMS and TDI device pins
are multiplexed into PGD in 2 clocks (see Figure 5-5).
The LSb is shifted first; and TDI and TMS are sampled
on the falling edge of PGC. There is no TDO output pro-
vided in this mode. The 2-Phase ICSP mode was
designed to accelerate 2-wire, write-only transactions.

FIGURE 5-4: 2-WIRE, 4-PHASE

FIGURE 5-5: 2-WIRE, 2-PHASE

Note: The packet is not actually executed until the
first clock of the next packet.
To enter 2-Wire, 2-Phase ICSP mode, the
TDOEN bit (DDPCON<0>) must be set
to ‘0’.

TMS

TDI

TDO

IR4IR0

‘1’

TCK

‘1’ ‘1’ ‘1’‘0’ ‘0’ ‘0’

X1

PGC

PGD pTDO = 1 TDI = IR0 TMS = 0 nTDO = 0

TMS

TDI

TDO

IR4IR0

‘1’

TCK

‘1’ ‘1’ ‘1’‘0’ ‘0’ ‘0’

X1

PGC

PGD TDI = IR0 TMS = 0
DS61145J-page 10 © 2007-2011 Microchip Technology Inc.

PIC32MX
6.0 PSEUDO OPERATIONS
To simplify the description of programming details, all
operations will be described using pseudo operations.
There are several functions used in the pseudocode
descriptions. These are used either to make the
pseudocode more readable, to abstract implementa-
tion-specific behavior, or both. When passing parame-
ters with pseudo operation, the following syntax will be
used: 5’h0x03 (i.e., send 5-bit hex value 0x03). These
functions are defined in this section, and include the
following operations:

• SetMode (mode)
• SendCommand (command)
• oData = XferData (iData)
• oData = XferFastData (iData)
• oData = XferInstruction (instruction)

6.1 SetMode Pseudo Operation
Format:

SetMode (mode)

Purpose:
To set the EJTAG state machine to a specific state.

Description:
The value of mode is clocked into the device on
signal TMS. TDI is set to a ‘0’ and TDO is ignored.

Restrictions:
None.

Example:
SetMode (6’b011111)

FIGURE 6-1: SetMode 4-WIRE

FIGURE 6-2: SetMode 2-WIRE

TMS

TDI

TDO

‘1’

TCK

‘1’ ‘1’‘1’ ‘1’ ‘0’

Mode = 6’b011111

PGD

PGC

TDI = 0 TDO = 1TMS = 1 TDI = 0 TMS = 0 TDO = X

Mode = 6’b011111
© 2007-2011 Microchip Technology Inc. DS61145J-page 11

PIC32MX

6.2 SendCommand Pseudo Operation
Format:
SendCommand (command)

Purpose:
To send a command to select a specific TAP register.

Description (in sequence):

1. The TMS Header is clocked into the device to
select the Shift IR state

2. The command is clocked into the device on
TDI while holding signal TMS low.

3. The last Most Significant bit (MSb) of the
command is clocked in while setting TMS
high.

4. The TMS Footer is clocked in on TMS to return
the TAP controller to the Run/Test Idle state.

Restrictions:
None.

Example:
SendCommand (5’h07)

FIGURE 6-3: SendCommand 4-WIRE

FIGURE 6-4: SendCommand 2-WIRE

TMS

TDI

TDO

iMSb

‘1’

TCK

‘1’ ‘1’ ‘1’‘0’ ‘0’ ‘0’

X1

iLSb

TMS Header = 1100

Command = 5’h07
Command (MSb)

+ TMS = 1 TMS Footer = 10

PGD

PGC

TDI = 0 TMS = 1 TMS = 1TDI = 0TDO = X TDO = XTDI=iMSbTDO = XTMS = 0TDI=iLSbTDO = XTMS = 1

TMS Header = 1100
Command (5’h07) + TMS = 0

Command (MSb) + TMS = 1 TMS Footer = 10
DS61145J-page 12 © 2007-2011 Microchip Technology Inc.

PIC32MX

6.3 XferData Pseudo Operation
Format:

oData = XferData (iData)

Purpose:
To clock data to and from the register selected by the
command.

Description (in sequence):
1. The TMS Header is clocked into the device to

select the Shift DR state.
2. The data is clocked in/out of the device on

TDI/TDO while holding signal TMS low.
3. The last MSb of the data is clocked in/out

while setting TMS high.
4. The TMS Footer is clocked in on TMS to return

the TAP controller to the Run/Test Idle state.

Restrictions:
None.

Example:
oData = XferData (32’h12)

FIGURE 6-5: XferData 4-WIRE

FIGURE 6-6: XferData 2-WIRE (4-PHASE)

TMS

TDI

TDO

iMSb

‘1’

TCK

‘1’ ‘1’‘0’ ‘0’ ‘0’

iLSb

TMS Header = 100 Data (32’h12)
Data (MSb)

+ TMS = 1 TMS Footer = 10

oMSboLSb

TDI = 0 TMS = 0 TDO = oLSbTDI = 0TDO = XTMS = 0TDI = 0TDO = XTMS = 1

PGC

PGD

TMS Header = 100

TDI = 0 TMS = 0 TDO = XTDI = 0TDO = XTMS = 1

TMS = 1 TDO = XTMS = 0TDI = iLSb TDO = oLSb+1 TDI = iMSb

Data (31’h12) + TMS = 0 Data (MSb) + TMS Footer = 1

TMS Footer = 10

...
© 2007-2011 Microchip Technology Inc. DS61145J-page 13

PIC32MX

6.4 XferFastData Pseudo Operation
Format:

oData = XferFastData (iData)

Purpose:
To quickly send 32 bits of data in/out of the device.

Description (in sequence):
1. The TMS Header is clocked into the device to

select the Shift DR state.

2. The input value of the PrAcc bit, which is ‘0’, is
clocked in.

3. TMS Footer = 10 is clocked in to return the TAP
controller to the Run/Test Idle state.

Restrictions:
The SendCommand (ETAP_FASTDATA) must be sent
first to select the Fastdata register, as shown in
Example 6-1. See Table 19-4 for a detailed descriptions
of commands.

EXAMPLE 6-1: SendCommand

FIGURE 6-7: XferFastData 4-WIRE

FIGURE 6-8: XferFastData 2-WIRE (2-PHASE)

Note: For 2-wire (4-phase) – on the last clock,
the oPrAcc bit is shifted out on TDO while
clocking in the TMS Header. If the value of
oPrAcc is not ‘1’, the whole operation
must be repeated.

Note: For 2-wire (4-phase) – the TDO during this
operation will be the LSb of output data.
The rest of the 31 bits of the input data are
clocked in and the 31 bits of output data
are clocked out. For the last bit of the input
data, the TMS Footer = 1 is set.

Note: The 2-Phase XferData is only used when
talking to the PE. See Section 16.0 “The
Programming Executive” for more
information.

// Select the Fastdata Register
SendCommand(ETAP_FASTDATA)
// Send/Receive 32-bit Data
oData = XferFastData(32’h12)

TMS

TDI

TDO

iMSbiLSb

‘1’

TCK

oLSb oMSb

‘1’ ‘1’‘0’ ‘0’ ‘0’

‘0’

‘1’

TMS Header = 100 PrAcc Data (32’h12)
Data (MSb) +

TMS = 1 TMS Footer = 10

TDI = X TMS = 1TDI = XTDI =TMS = 0TDO =TMS = 0TDI = 0TMS = 1

TMS Header = 100 Data (32’h12) TMS Footer = 10

iLSbPGD

PGC

PrAcc

TMS = 1 MSb

Data (MSb) TMS = 1
DS61145J-page 14 © 2007-2011 Microchip Technology Inc.

PIC32MX

FIGURE 6-9: XferFastData 2-WIRE (4-PHASE)

TDI = 0 TMS = 0 TDO = oPrAccTDI = 0TDO = XTMS = 0TDI = 0TDO = XTMS = 1

PGC

PGD

TMS Header = 100

TDI = 0 TMS = 0 TDO = XTDI = 0TDO = XTMS = 1

TMS = 1 TDO = XTMS = 0TDI = iLSb TDO = oLSb+1 TDI = iMSb

Data (31’h12) + TMS = 0 Data (MSb) + TMS Footer = 1

TMS Footer = 10

TMS = 0TDI = 0 TDO = oLSb

PrAcc
© 2007-2011 Microchip Technology Inc. DS61145J-page 15

PIC32MX

6.5 XferInstruction Pseudo

Operation
Format:
XferInstruction (instruction)

Purpose:
To send 32 bits of data for the device to execute.

Description:
The instruction is clocked into the device and then
executed by CPU.

Restrictions:
The device must be in Debug mode.

EXAMPLE 6-2: XferInstruction
XferInstruction (instruction)
{

// Select Control Register
SendCommand(ETAP_CONTROL);
// Wait until CPU is ready
// Check if Processor Access bit (bit 18) is set
do {

controlVal = XferData(32’h0x0004C000);
} while(PrAcc(contorlVal<18>) is not ‘1’);

// Select Data Register
SendCommand(ETAP_DATA);

// Send the instruction
XferData(instruction);

// Tell CPU to execute instruction
SendCommand(ETAP_CONTROL);
XferData(32’h0x0000C000);

}

DS61145J-page 16 © 2007-2011 Microchip Technology Inc.

PIC32MX
7.0 ENTERING PROGRAMMING
MODE

For 2-wire programming methods, the target device
must be placed in a special programming mode before
executing further steps.

The following steps are required to enter Programming
mode:

1. The MCLR pin is briefly driven high, then low.
2. A 32-bit key sequence is clocked into PGDx.
3. MCLR is then driven high within a specified

period of time and held.

Please refer to Section 20.0 “AC/DC Characteristics
and Timing Requirements” for timing requirements.

The programming voltage applied to MCLR is VIH,
which is essentially VDD, in PIC32MX devices. There is
no minimum time requirement for holding at VIH. After
VIH is removed, an interval of at least P18 must elapse
before presenting the key sequence on PGDx.

The key sequence is a specific 32-bit pattern: ‘0100
1101 0100 0011 0100 1000 0101 0000’ (the
acronym ‘MCHP’, in ASCII). The device will enter
Program/Verify mode only if the key sequence is valid.
The MSb of the Most Significant nibble must be shifted
in first.

Once the key sequence is complete, VIH must be
applied to MCLR and held at that level for as long as
Programming mode is to be maintained. An interval of
at least time P17 and P7 must elapse before presenting
data on PGDx. Signals appearing on PGDx before P7
has elapsed will not be interpreted as valid.

Upon successful entry, the program memory can be
accessed and programmed in serial fashion. While in
Programming mode, all unused I/Os are placed in the
high-impedance state.

FIGURE 7-1: ENTERING ENHANCED ICSP™ MODE

Note: If a 4-wire programming method is used, it
is not necessary to enter the programming
mode.

MCLR

PGDx

PGCx

VDD

P6
P14

b31 b30 b29 b28 b27 b2 b1 b0b3
...

Program/Verify Entry Code = 0x4D434850

P1A
P1B

P18

P17

0 1 0 0 1 0 0 0 0

P7
VIH VIH

P20
© 2007-2011 Microchip Technology Inc. DS61145J-page 17

PIC32MX
8.0 CHECK DEVICE STATUS
Before a device can be programmed, the programmer
must check the status of the device to ensure that it is
ready to receive information.

FIGURE 8-1: CHECK DEVICE STATUS

8.1 4-Wire Interface
Four-wire JTAG programming is a Mission mode
operation and therefore the setup sequence to begin
programing should be done while asserting MCLR.
Holding the device in Reset prevents the processor
from executing instructions or driving ports.

The following steps are required to check the device
status using the 4-wire interface:

1. Set MCLR pin low.
2. SetMode (6’b011111) to force the Chip TAP

controller into Run Test/Idle state.
3. SendCommand (MTAP_SW_MTAP).
4. SendCommand (MTAP_COMMAND).
5. statusVal = XferData (MCHP_STATUS).
6. If CFGRDY (statusVal<3>) is not ‘1’ and

FCBUSY (statusVal<2>) is not ‘0’ GOTO step 5.

8.2 2-Wire Interface
The following steps are required to check the device
status using the 2-wire interface:

1. SetMode (6’b011111) to force the Chip TAP
controller into Run Test/Idle state.

2. SendCommand (MTAP_SW_MTAP).
3. SendCommand (MTAP_COMMAND).
4. statusVal = XferData (MCHP_STATUS).
5. If CFGRDY (statusVal<3>) is not ‘1’ and

FCBUSY (statusVal<2>) is not ‘0’, GOTO
step 4.

SetMode (6’b011111)

SendCommand (MTAP_SW_MTAP)

SendCommand (MTAP_COMMAND)

statusVal = XferData (MCHP_STATUS)

FCBUSY = 0
CFGRDY = 1

No

Set MCLR low 4-Wire

Done

Yes

Note: If CFGRDY and FCBUSY do not come to
the proper state within 10 ms, the
sequence may have been executed
wrong or the device is damaged.
DS61145J-page 18 © 2007-2011 Microchip Technology Inc.

PIC32MX
9.0 ERASING THE DEVICE
Before a device can be programmed, it must be
erased. The erase operation writes all ‘1s’ to the Flash
memory and prepares it to program a new set of data.
Once a device is erased, it can be verified by perform-
ing a “Blank Check” operation. See Section 9.1
“Blank Check” for more information.

The procedure for erasing program memory (Program,
Boot, and Configuration memory) consists of selecting
the MTAP and sending the MCHP_ERASE command.
The programmer then must wait for the erase operation
to complete by reading and verifying bits in the
MCHP_STATUS value. Figure 9-1 illustrates the process
for performing a Chip Erase.

FIGURE 9-1: ERASE DEVICE

The following steps are required to erase a target
device:

1. SendCommand (MTAP_SW_MTAP).
2. SendCommand (MTAP_COMMAND).
3. XferData (MCHP_ERASE).
4. delay 1 ms.
5. statusVal = XferData (MCHP_STATUS).
6. If CFGRDY (statusVal<3>) is not ‘1’ and

FCBUSY (statusVal<2>) is not ‘0’, GOTO to
step 4.

9.1 Blank Check
The term “Blank Check” implies verifying that the
device has been successfully erased and has no
programmed memory locations. A blank or erased
memory location always reads as ‘1’.

The device Configuration registers are ignored by the
Blank Check. Additionally, all unimplemented memory
space should be ignored from the Blank Check.

Note: The Device ID memory locations are read-
only and cannot be erased. Therefore,
Chip Erase has no effect on these memory
locations.

SendCommand (MTAP_COMMAND)

statusVal = XferData (MCHP_STATUS)

FCBUSY = 0
CFGRDY = 1

No

SendCommand (MTAP_SW_MTAP)
Select MTAP

Put MTAP in Command Mode

XferData (MCHP_ERASE)

Issue Chip Erase Command

Read Erase Status

Done

Yes

1 millisecond Delay

Note: The Chip Erase operation is a self-timed
operation. If the FCBUSY and CFGRDY
bits do not become properly set within the
specified Chip Erase time, the sequence
may have been executed wrong or the
device is damaged.
© 2007-2011 Microchip Technology Inc. DS61145J-page 19

PIC32MX
10.0 ENTERING SERIAL
EXECUTION MODE

Before a device can be programmed, it must be placed
in Serial Execution mode.

The procedure for entering Serial Execution mode con-
sists of verifying that the device is not code-protected.
If the device is code-protected, a Chip Erase must be
performed. See Section 9.0 “Erasing the Device” for
details.

FIGURE 10-1: ENTERING SERIAL
EXECUTION MODE

10.1 4-Wire Interface
The following steps are required to enter Serial
Execution mode:

1. SendCommand (MTAP_SW_MTAP).
2. SendCommand (MTAP_COMMAND).
3. statusVal = XferData (MCHP_STATUS).
4. If CPS (statusVal<7>) is not ‘1’, the device must

be erased first.
5. SendCommand (MTAP_SW_ETAP).
6. SendCommand (ETAP_EJTAGBOOT).
7. Set MCLR high.

10.2 2-Wire Interface
The following steps are required to enter Serial
Execution mode:

1. SendCommand (MTAP_SW_MTAP).
2. SendCommand (MTAP_COMMAND).
3. statusVal = XferData (MCHP_STATUS).
4. If CPS (statusVal<7>) is not ‘1’, the device must

be erased first.
5. XferData (MCHP_ASSERT_RST).
6. SendCommand (MTAP_SW_ETAP).
7. SendCommand (ETAP_EJTAGBOOT).
8. SendCommand (MTAP_SW_MTAP).
9. SendCommand (MTAP_COMMAND).
10. XferData (MCHP_DE_ASSERT_RST).
11. XferData (MCHP_EN_FLASH).

Select MTAP
SendCommand (MTAP_SW_MTAP)

Put MTAP in Command Mode
SendCommand (MTAP_COMMAND)

Read Code-Protect Status
statusVal = XferData (MCHP_STATUS)

CPS = 1
Cannot Enter

Must Erase First

Select ETAP
SendCommand (MTAP_SW_ETAP)

Put CPU in Serial Exec Mode
SendCommand (ETAP_EJTAGBOOT)

No

2-Wire

4-Wire

Set MCLR High

Enable Flash
XferData (MCHP_EN_FLASH)

Release Reset
XferData (MCHP_DE_ASSERT_RST)

Put MTAP in Command Mode
SendCommand (MTAP_COMMAND)

Select MTAP
SendCommand (MTAP_SW_MTAP)

Assert Reset
XferData (MCHP_ASSERT_RST) 2-Wire

Yes
DS61145J-page 20 © 2007-2011 Microchip Technology Inc.

PIC32MX
11.0 DOWNLOADING THE
PROGRAMMING EXECUTIVE
(PE)

The PE resides in RAM memory and is executed by the
CPU to program the device. The PE provides the
mechanism for the programmer to program and verify
PIC32MX devices using a simple command set and
communication protocol. There are several basic
functions provided by the PE:

• Read Memory
• Erase Memory
• Program Memory
• Blank Check
• Read Executive Firmware Revision
• Get the cyclic redundancy check (CRC) of Flash

memory locations

The PE performs the low-level tasks required for
programming and verifying a device. This allows the
programmer to program the device by issuing the
appropriate commands and data. A detailed descrip-
tion for each command is provided in Section 16.2
“The PE Command Set”.

The PE uses the device’s data RAM for variable stor-
age and program execution. After the PE has run, no
assumptions should be made about the contents of
data RAM.

After the PE is loaded into the data RAM, the PIC32MX
family can be programmed using the command set
shown in Table 16-1.

FIGURE 11-1: DOWNLOADING THE PE

Loading the PE in the memory is a two step process:

1. Load the PE loader in the data RAM. (The PE
loader loads the PE binary file in the proper loca-
tion of the data RAM, and when done, jumps to
the programming exec and starts executing it.)

2. Feed the PE binary to the PE loader.

Table 11-1 lists the steps that are required to download
the PE.

Write the PE Loader to RAM

Load the PE

TABLE 11-1: DOWNLOAD THE PE
Operation Operand

Step 1: Initialize BMXCON to 0x1f0040. The instruc-
tion sequence executed by the PIC32MX
core is as follows:

lui a0,0xbf88
ori a0,a0,0x2000 /* address of BMXCON */
lui a1,0x1f
ori a1,a1,0x40 /* $a1 has 0x1f0040 */
sw a1,0(a0) /* BMXCON initialized */

XferInstruction 0x3c04bf88

XferInstruction 0x34842000

XferInstruction 0x3c05001f

XferInstruction 0x34a50040

XferInstruction 0xac850000

Step 2: Initialize BMXDKPBA to 0x800. The
instruction sequence executed by the
PIC32MX core is as follows:

li a1,0x800
sw a1,16(a0)

XferInstruction 0x34050800

XferInstruction 0xac850010

Step 3: Initialize BMXDUDBA and BMXDUPBA to the
value of BMXDRMSZ. The instruction sequence exe-
cuted by the PIC32MX core is as follows:
lw a1,64(a0) /* load BMXDMSZ */
sw a1,32(a0)
sw a1,48(a0)

XferInstruction 0x8C850040

XferInstruction 0xac850020

XferInstruction 0xac850030

Step 4: Set up PIC32MX RAM address for PE. The
instruction sequence executed by the
PIC32MX core is as follows:

lui a0,0xa000
ori a0,a0,0x800

XferInstruction 0x3c04a000

XferInstruction 0x34840800
© 2007-2011 Microchip Technology Inc. DS61145J-page 21

PIC32MX
Step 5: Load the PE_Loader. Repeat this step (Step
5) until the entire PE_Loader is loaded in the
PIC32MX memory. In the operands field,
“<PE_loader hi++>” represents the MSbs 31
through 16 of the PE loader opcodes shown
in Table 11-2. Likewise, “<PE_loader lo++>”
represents the LSbs 15 through 0 of the PE
loader opcodes shown in Table 11-2. The
“++” sign indicates that when these opera-
tions are performed in succession, the new
word is to be transferred from the list of
opcodes of the LPE Loader shown in
Table 11-2. The instruction sequence exe-
cuted by the PIC32MX core is as follows:

lui a2, <PE_loader hi++>
ori a0,a0, <PE_loader lo++>
sw a2,0(a0)
addiu a0,a0,4

XferInstruction (0x3c06 <PE_loader hi++>)

XferInstruction (0x34c6 <PE_loader lo++>)

XferInstruction 0xac860000

XferInstruction 0x24840004

Step 6: Jump to the PE_Loader. The instruction
sequence executed by the PIC32MX core is
as follows:

lui t9,0xa000
ori t9,t9,0x800
jr t9
nop

XferInstruction 0x3c19a000

XferInstruction 0x37390800

XferInstruction 0x03200008

XferInstruction 0x00000000

Step 7: Load the PE using the PE_Loader. Repeat
the last instruction of this step (Step 7) until
the entire PE is loaded into the PIC32MX
memory. In this step, you are given an Intel®
Hex format file of the PE that you will parse
and transfer a number of 32-bit words at a
time to the PIC32MX memory (refer to
Appendix B: “Hex File Format”). The
instruction sequence executed by the
PIC32MX is shown in the “Instruction”
column of Table 11-2: PE Loader Opcodes.

SendCommand ETAP_FASTDATA

XferFastData PE_ADDRESS (Address of PE
program block from PE Hex
file)

XferFastData PE_SIZE (Number of 32-bit
words of the program block
from PE Hex file)

XferFastData PE software opcode from PE
Hex file (PE Instructions)

TABLE 11-1: DOWNLOAD THE PE
Operation Operand

Step 8: Jump to the PE. Magic number
(0xDEAD0000) instructs the PE_Loader that
the PE is completely loaded into the mem-
ory. When the PE_Loader sees the magic
number, it jumps to the PE.

XferFastData 0x00000000

XferFastData 0xDEAD0000

TABLE 11-2: PE LOADER OPCODES
Opcode Instruction

0x3c07dead lui a3, 0xdead

0x3c06ff20 lui a2, 0xff20

0x3c05ff20 lui al, 0xff20

herel:

0x8cc40000 lw a0, 0 (a2)

0x8cc30000 lw v1, 0 (a2)

0x1067000b beq v1, a3, <here3>

0x00000000 nop

0x1060fffb beqz v1, <here1>

0x00000000 nop

here2:

0x8ca20000 lw v0, 0 (a1)

0x2463ffff addiu v1, v1, -1

0xac820000 sw v0, 0 (a0)

0x24840004 addiu a0, a0, 4

0x1460fffb bnez v1, <here2>

0x00000000 nop

0x1000fff3 b <here1>

0x00000000 nop

here3:

0x3c02a000 lui v0, 0xa000

0x34420900 ori v0, v0, 0x900

0x00400008 jr v0

0x00000000 nop

TABLE 11-1: DOWNLOAD THE PE
Operation Operand
DS61145J-page 22 © 2007-2011 Microchip Technology Inc.

PIC32MX
12.0 DOWNLOADING A DATA
BLOCK

To program a block of data to the PIC32MX device, it
must first be loaded into SRAM.

12.1 Without the PE
To program a block of memory without the use of the
PE, the block of data must first be written to RAM. This
method requires the programmer to transfer the actual
machine instructions with embedded data for writing
the block of data to the devices internal RAM memory.

FIGURE 12-1: DOWNLOADING DATA
WITHOUT THE PE

The following steps are required to download a block of
data:

1. XferInstruction (opcode).
2. Repeat Step 1 until the last instruction is

transferred to CPU.

TABLE 12-1: DOWNLOAD DATA OPCODES

12.2 With the PE
When using the PE, the code memory is programmed
with the PROGRAM command (see Table 16-2). The
program can program up to one row of code memory
starting from the memory address specified in the
command. The number of PROGRAM commands
required to program a device depends on the number
of write blocks that must be programmed in the device.

FIGURE 12-2: DOWNLOADING DATA
WITH THE PE

The following steps are required to download a block of
data using the PE:

1. XferFastData (PROGRAM|DATA_SIZE).
2. XferFastData (ADDRESS).
3. response = XferFastData (32’h0x00).

bufAddr = RAM Buffer Address

Write 32-bit Data to bufAddr

Increment bufAddr

Done
No

Opcode Instruction
Step 1: Initialize SRAM Base Address to

0xA000_0000
3c10a000 lui $s0, 0xA000;

Step 2: Write the entire row of data to be
programmed into system SRAM.

3c08<DATA>
3508<DATA>
ae08<OFFSET>

lui $t0, <DATA(31:16)>;
ori $t0, <DATA(15:0)>;
sw $t0, <OFFSET>($s0);

// OFFSET increments by 4

Step3: Repeat Step 2 until one row of data has
been loaded.

Issue Download Data Command

Receive Response
© 2007-2011 Microchip Technology Inc. DS61145J-page 23

PIC32MX
13.0 INITIATING A FLASH ROW
WRITE

Once a row of data has been downloaded into the
device’s SRAM, the programming sequence must be
initiated to write the block of data to Flash memory.

13.1 With the PE
When using PE, the data is immediately written to the
Flash memory from the SRAM. No further action is
required.

13.2 Without the PE
Flash memory write operations are controlled by the
NVMCON register. Programming is performed by set-
ting NVMCON to select the type of write operation and
initiating the programming sequence by setting the WR
control bit NVMCON<15>.

FIGURE 13-1: INITIATING FLASH WRITE
WITHOUT THE PE

The following steps are required to initiate a Flash
write:

1. XferInstruction (opcode).
2. Repeat Step 1 until the last instruction is

transferred to the CPU.

Start Operation

Unlock Flash Controller

Load Addresses in NVM Registers

Select Write Operation

Unprotect Control Registers

Done

TABLE 13-1: INITIATE FLASH ROW WRITE
OPCODES

Opcode Instruction
Step 1: Initialize some constants.
3c04bf80
3484f400
34054003
34068000
34074000
3c11aa99
36316655
3c125566
365299aa
3c13ff20
3c100000

lui a0,0xbf80
ori a0,a0,0xf400
ori a1,$0,0x4003
ori a2,$0,0x8000
ori a3,$0,0x4000
lui s1,0xaa99
ori s1,s1,0x6655
lui s2,0x5566
ori s2,s2,0x99aa
lui s3,0xff20
lui s0,0x0000

Step 2: Set NVMADDR with the address of the
Flash row to be programmed.

3c08<ADDR>
3508<ADDR>
ac880020

lui t0,<FLASH_ROW_ADDR(31:16)>
ori t0,t0,<FLASH_ROW_ADDR(15:0)>
sw t0,32(a0)

Step 3: Set NVMSRCADDR with the physical
source SRAM address.

3610<ADDR> ori s0,s0,<RAM_ADDR(15:0)>

Step 4: Set up NVMCON for write operation and poll
LVDSTAT.

ac850000

8C880000
31080800
1500fffd
00000000

sw a1,0(a0)
delay (6 µs)

here1:
lw t0,0(a0)
andit0,t0,0x0800
bne t0,$0,<here1>
nop

Step 5: Unlock NVMCON and start write operation.
ac910010
ac920010
ac860008

sw s1,16(a0)
sw s2,16(a0)
sw a2,8(a0)

Step 6: Repeatedly read the NVMCON register and
poll for WR bit to get cleared.

8c880000
01064024
1500fffd
00000000

here2:
lw t0,0(a0)
and t0,t0,a2
bne t0,$0,<here2>
nop
DS61145J-page 24 © 2007-2011 Microchip Technology Inc.

PIC32MX
Step 7: Wait at least 500 ns after seeing a ‘0’ in
NVMCON<15> before writing to any NVM
registers. This requires inserting NOP in the
execution.

Example: The following example assumes
that the core is executing at 8 MHz; there-
fore, four NOP instructions equate to 500 ns.

00000000
00000000
00000000
00000000

nop
nop
nop
nop

Step 8: Clear NVMCON.WREN bit.
ac870004 sw a3,4(a0)

Step 9: Check the NVMCON.WRERR bit to ensure
that the program sequence completed suc-
cessfully. If an error occurs, jump to the
error-processing routine.

8c880000
30082000
1500<ERR_
 PROC>
00000000

lw t0,0(a0)
andit0,zero,0x2000
bne t0, $0, <err_proc_offset>

nop

TABLE 13-1: INITIATE FLASH ROW WRITE
OPCODES (CONTINUED)

Opcode Instruction
© 2007-2011 Microchip Technology Inc. DS61145J-page 25

PIC32MX
14.0 VERIFY DEVICE MEMORY
The verify step involves reading back the code memory
space and comparing it against the copy held in the
programmer’s buffer. The Configuration registers are
verified with the rest of the code.

14.1 Verifying Memory with the PE
Memory verify is performed using the GET_CRC
command (see Table 16-2) as shown below.

FIGURE 14-1: VERIFYING MEMORY
WITH THE PE

The following steps are required to verify memory using
the PE:

1. XferFastData (GET_CRC).
2. XferFastData (start_Address).
3. XferFastData (length).
4. valCkSum = XferFastData (32’h0x0).

Verify that valCkSum matches the checksum of the
copy held in the programmer’s buffer.

14.2 Verifying Memory without the PE
Reading from Flash memory is performed by executing
a series of read accesses from the Fastdata register.
Table 19-4 shows the EJTAG programming details,
including the address and opcode data for performing
processor access operations.

FIGURE 14-2: VERIFYING MEMORY
WITHOUT THE PE

The following steps are required to verify memory:

1. XferInstruction (opcode).
2. Repeat Step 1 until the last instruction is

transferred to the CPU.
3. Verify that valRead matches the copy held in the

programmer’s buffer.
4. Repeat Steps 1-3 for each memory location.

TABLE 14-1: VERIFY DEVICE OPCODES

Note: Because the Configuration registers
include the device code protection bit,
code memory should be verified immedi-
ately after writing (if code protection is
enabled). This is because the device will
not be readable or verifiable if a device
Reset occurs after the code-protect bit
has been cleared.

Issue Verify Command

Receive Response

Opcode Instruction
Step 1: Initialize some constants.
3c04bf80 lui $s3, 0xFF20

Step 2: Read memory Location.
3c08<ADDR>
3508<ADDR>

lui $t0,<FLASH_WORD_ADDR(31:16)>
ori $t0,<FLASH_WORD_ADDR(15:0)>

Step 3: Write to Fastdata location.
8d090000
ae690000

 lw $t1, 0($t0)
 sw $t1, 0($s3)

Step 4: Read data from Fastdata register
0xFF200000.

Step 5: Repeat Steps 2-4 until all configuration
locations are read.

Read Memory Location

Verify Location

Done
No
DS61145J-page 26 © 2007-2011 Microchip Technology Inc.

PIC32MX
15.0 EXITING PROGRAMMING
MODE

Once a device has been properly programmed, the
device must be taken out of Programming mode to start
proper execution of its new program memory contents.

15.1 4-Wire Interface
Exiting Test mode is done by removing VIH from MCLR,
as illustrated in Figure 15-1. The only requirement for
exit is that an interval, P9B, should elapse between the
last clock and program signals before removing VIH.

FIGURE 15-1: 4-WIRE EXIT TEST MODE

The following steps are required to exit Test mode:

1. SetMode (5’b11111).
2. Assert MCLR.
3. Remove power (if the device is powered).

15.2 2-Wire Interface
Exiting Test mode is done by removing VIH from MCLR,
as illustrated in Figure 15-2. The only requirement for
exit is that an interval, P9B, should elapse between the
last clock and program signals on PGCx and PGDx
before removing VIH.

FIGURE 15-2: 2-WIRE EXIT TEST MODE

The following list provides the actual steps required to
exit test mode:

1. SetMode (5’b11111).
2. Assert MCLR.
3. Issue a clock pulse on PGCx.
4. Remove power (if the device is powered).

MCLR

VDD

TCK

TMS

TDI

TDO

‘1’ ‘1’ ‘0’

P9B

MCLR

VDD

PGDx

PGCx

P9B P16

VIH

VIH

PGD = Input
© 2007-2011 Microchip Technology Inc. DS61145J-page 27

PIC32MX
16.0 THE PROGRAMMING
EXECUTIVE

16.1 PE Communication
The programmer and the PE have a master-slave
relationship, where the programmer is the master
programming device and the PE is the slave.

All communication is initiated by the programmer in the
form of a command. The PE is able to receive only one
command at a time. Correspondingly, after receiving
and processing a command, the PE sends a single
response to the programmer.

16.1.1 2-WIRE ICSP EJTAG RATE
In Enhanced ICSP mode, the PIC32MX family devices
operate from the internal Fast RC oscillator, which has
a nominal frequency of 8 MHz. To ensure that the pro-
grammer does not clock too fast, it is recommended
that a 1 MHz clock be provided by the programmer.

16.1.2 COMMUNICATION OVERVIEW
The programmer and the PE communicate using the
EJTAG Address, Data and Fastdata registers. In partic-
ular, the programmer transfers the command and data
to the PE using the Fastdata register. The programmer
receives a response from the PE using the Address
and Data registers. The pseudo operation of receiving
a response is shown in the GetPEResponse pseudo
operation below:

Format:
response = GetPEResponse()

Purpose:
Enables the programmer to receive the 32-bit
response value from the PE.

EXAMPLE 16-1: GetPEResponse EXAMPLE

The typical communication sequence between the
programmer and the PE is shown in Table 16-1.

The sequence begins when the programmer sends the
command and optional additional data to the PE, and
the PE carries out the command.

When the PE has finished executing the command, it
sends the response back to the programmer.

The response may contain more than one response.
For example, if the programmer sent a READ
command, the response will contain the data read.

TABLE 16-1: COMMUNICATION
SEQUENCE FOR THE PE

Operation Operand

Step 1: Send command and optional data from
programmer to the PE.

XferFastData (Command | data len)

XferFastData.. optional data..

Step 2: Programmer reads the response from the
PE.

GetPEResponse response

GetPEResponse.. response..

WORD GetPEResponse()
{
 WORD response;

// Wait until CPU is ready
SendCommand(ETAP_CONTROL);
// Check if Proc. Access bit (bit 18) is set
do {
 controlVal=XferData(32’h0x0004C000);
} while(PrAcc(contorlVal<18>) is not ‘1’);

// Select Data Register
SendCommand(ETAP_DATA);
// Receive Response
response = XferData(0);
// Tell CPU to execute instruction
SendCommand(ETAP_CONTROL);
XferData(32’h0x0000C000);
// return 32-bit response
return response;
}

DS61145J-page 28 © 2007-2011 Microchip Technology Inc.

PIC32MX

16.2 The PE Command Set
The PE command set is shown in Table 16-2. This
table contains the opcode, mnemonic, length, time-out
and short description for each command. Functional
details on each command are provided in
Section 16.2.3 “ROW_PROGRAM Command”
through Section 16.2.14 “CHANGE_CFG
Command”.

The PE sends a response to the programmer for each
command that it receives. The response indicates if the
command was processed correctly. It includes any
required response data or error data.

16.2.1 COMMAND FORMAT
All PE commands have a general format consisting of
a 32-bit header and any required data for the command
(see Figure 16-1). The 32-bit header consists of a
16-bit opcode field, which is used to identify the com-
mand, a 16-bit command length field. The length field
indicates the number of bytes to be transferred, if any.

The command in the Opcode field must match one of
the commands in the command set that is listed in
Table 16-2. Any command received that does not
match a command the list returns a NACK response,
as shown in Table 16-3.

The PE uses the command Length field to determine
the number of bytes to read from or to write to. If the
value of this field is incorrect, the command is not be
properly received by the PE.

TABLE 16-2: PE COMMAND SET

Note: Some commands have no Length infor-
mation, however, the Length field must be
sent and the programming executive will
ignore the data.

FIGURE 16-1: COMMAND FORMAT
31 16

Opcode
15 0

Length (optional)
31 16

Command Data High (if required)
15 0

Command Data Low (if required)

Opcode Mnemonic Length(1)

(32-bit words) Description

0x0 ROW_PROGRAM(2) 2 Program one row of Flash memory at the specified address.

0x1 READ 2 Read N 32-bit words of memory starting from the specified
address. (N < 65536).

0x2 PROGRAM 130 Program Flash memory starting at the specified address.

0x3 WORD_PROGRAM 3 Program one word of Flash memory at the specified address.

0x4 CHIP_ERASE 1 Chip Erase of entire chip.

0x5 PAGE_ERASE 2 Erase pages of code memory from the specified address.

0x6 BLANK_CHECK 1 Blank Check code.

0x7 EXEC_VERSION 1 Read the PE software version.

0x8 GET_CRC 2 Get the CRC of Flash memory.

0x9 PROGRAM_CLUSTER 3 Programs the specified number of bytes to the specified address.

0xA GET_DEVICEID 1 Returns the hardware ID of the device.

0xB CHANGE_CFG(3) 2 Used by the probe to set various configuration settings for the PE.

Note 1: Length does not indicate the length of data to be transferred. Length indicates the size of the command
itself, including 32-bit header.

2: Refer to Table 5-1 for the row size for each device.
3: This command is not available in PIC32MX1XX/2XX devices.
© 2007-2011 Microchip Technology Inc. DS61145J-page 29

PIC32MX

16.2.2 RESPONSE FORMAT
The PE response set is shown in Table 16-3. All PE
responses have a general format consisting of a 32-bit
header and any required data for the response (see
Figure 16-2).

16.2.2.1 Last_Cmd Field
Last_Cmd is a 16-bit field in the first word of the
response and indicates the command that the PE pro-
cessed. It can be used to verify that the PE correctly
received the command that the programmer
transmitted.

16.2.2.2 Response Code
The response code indicates whether the last
command succeeded or failed, or if the command is a
value that is not recognized. The response code values
are shown in Table 16-3.

16.2.2.3 Optional Data
The response header may be followed by optional data
in case of certain commands such as read. The num-
ber of 32-bit words of optional data varies depending
on the last command operation and its parameters.

16.2.3 ROW_PROGRAM COMMAND
The ROW_PROGRAM command instructs the PE to
program a row of data at a specified address.

The data to be programmed to memory, located in com-
mand words Data_1 through Data_128, must be
arranged using the packed instruction word format
shown in Table 16-4.

Expected Response (1 word):

FIGURE 16-4: ROW_PROGRAM RESPONSE

FIGURE 16-2: RESPONSE FORMAT
31 16

Last Command
15 0

Response Code
31 16

Data_High_1
15 0

Data_Low_1
31 16

Data_High_N
15 0

Data_Low_N

TABLE 16-3: RESPONSE VALUES
Opcode Mnemonic Description

0x0 PASS Command successfully
processed

0x2 FAIL Command unsuccessfully
processed

0x3 NACK Command not known

FIGURE 16-3: ROW_PROGRAM COMMAND
31 16

Opcode
15 0

Length
31 16

Addr_High
15 0

Addr_Low
31 16

Data_High_1
15 0

Data_Low_1
31 16

Data_High_N
15 0

Data_Low_N

TABLE 16-4: ROW_PROGRAM FORMAT

Field Description

Opcode 0x0
Length 128
Addr_High High 16 bits of 32-bit destination

address
Addr_Low Low 16 bits of 32-bit destination

address
Data_High_1 High 16 bits data word 1
Data_Low_1 Low 16 bits data word 1
Data_High_N High 16 bits data word 2 through

128
Data_Low_N Low 16 bits data word 2 through 128

31 16
Last Command

15 0
Response Code
DS61145J-page 30 © 2007-2011 Microchip Technology Inc.

PIC32MX

16.2.4 READ COMMAND
The READ command instructs the PE to read the instruc-
tion Length field that contains the number of 32-bit words
of Flash memory, including Configuration Words,
starting from the 32-bit address specified by the
Addr_Low and Addr_High fields. This command can
only be used to read 32-bit data. All data returned in
response to this command uses the packed data format
that is shown in Table 16-5.

Expected Response:

FIGURE 16-6: READ RESPONSE

FIGURE 16-5: READ COMMAND
31 16

Opcode
15 0

Length
31 16

Addr_High
15 0

Addr_Low

TABLE 16-5: READ FORMAT

Field Description

Opcode 0x1
Length Number of 32-bit words to read

(max. of 65535)
Addr_Low Low 16 bits of 32-bit source address
Addr_High High 16 bits of 32-bit source

address

31 16
Last Command

15 0
Response Code

31 16
Data High

15 0
Data Low

Note: Reading unimplemented memory will
cause the PE to reset. Please ensure that
only memory locations present on a
particular device are accessed.
© 2007-2011 Microchip Technology Inc. DS61145J-page 31

PIC32MX

16.2.5 PROGRAM COMMAND
The PROGRAM command instructs the PE to program
Flash memory, including Configuration Words, starting
from the 32-bit address specified in the Addr_Low and
Addr_High fields. The address must be aligned to a
512-byte boundary (aligned to Flash row size). Also,
the length must be a multiple of 512 bytes (multiple of
the Flash row size).

There are three programming scenarios:

1. The length of the data to be programmed is 512
bytes.

2. The length of the data to be programmed is
1024 bytes.

3. The length of the data to be programmed is
larger than 1024 bytes.

When the data length is equal to 512 bytes, the PE
receives the 512-byte block of data from the probe and
immediately sends the response for this command
back to the probe.

When the data length is equal to 1024 bytes, the PE
receives the first two 512-byte blocks of data from the
probe sequentially. The PE sends the response with
the status of the write operation for the first 512-byte
block back to the probe, followed immediately by the
status of the write operation for the second 512-byte
block.

If the data to be programmed is larger than 1024 bytes,
the PE receives the first two 512-byte blocks of data
from the probe sequentially. The PE sends the
response for the first 512-byte block of data back to the
probe. The PE receives the third 512-byte block probe
and sends the response for the second 512-bye block
back to the probe. Successive blocks from the probe
and subsequent responses to the probe are received
and sent same way. After receiving the last 512-byte
block from the probe, the PE sends the response for
the second-to-last block to the probe, followed by the
response for the last block.

If the PE encounters an error in programming any of
the blocks, it sends a failure status to the probe. On
receiving the failure status, the probe must stop send-
ing data. The PE does not receive any other data for
this command from the probe. The process is
illustrated in Figure 16-9.

The response for this command is a little different than
the response for other commands. The 16 MSbs of the
response contain the 16 LSbs of the destination
address, where the last block is programmed. This
helps the probe and the PE maintain proper
synchronization of sending, and receiving, data and
responses.

Expected Response (1 word):

FIGURE 16-8: PROGRAM RESPONSE

FIGURE 16-7: PROGRAM COMMAND
31 16

Opcode
15 0

Not Used
31 16

Addr_High
15 0

Addr_Low
31 16

Length_High
15 0

Length_Low
31 16

Data_High_N
15 0

Data_Low_N

TABLE 16-6: PROGRAM FORMAT

Field Description

Opcode 0x2
Addr_Low Low 16 bits of 32-bit destination

address
Addr_High High 16 bits of 32-bit destination

address
Length_Low Low 16 bits of Length
Length_High High 16 bits Length
Data_Low_N Low 16 bits data word 2 through N
Data_High_N High 16 bits data word 2 through N

Note: If the PROGRAM command fails, the
programmer should read the failing row
using the READ command from the Flash
memory. Next, the programmer should
compare the row received from Flash
memory to its local copy, word-by-word, to
determine the address where Flash
programming fails.

31 16
LSB 16 bits of the destination address of last block

15 0
Response Code
DS61145J-page 32 © 2007-2011 Microchip Technology Inc.

PIC32MX

FIGURE 16-9: PROGRAM COMMAND ALGORITHM

Done

Receive status
for Block N

Receive status
for Block N-1

Receive status
for Block 2

Receive status
for Block 2

Receive status
for Block 1

Receive status
(LSB 16 bits of

Dest Addr
Status Value)

Block 1
Send 512 bytes
(one ROW_SIZE)

Start

Send 512 bytes
(one ROW_SIZE)

Block 1
Send 512 bytes
(one ROW_SIZE)

Block 2
Send 512 bytes
(one ROW_SIZE)

Block 2
Send 512 bytes
(one ROW_SIZE)

Receive status
for Block 1

Data Data
is

512 bytes
is

1024 bytes

Data

Block 3
Send 512 bytes
(one ROW_SIZE)

Block N
Send 512 bytes
(one ROW_SIZE)

is larger than
1024 bytes
© 2007-2011 Microchip Technology Inc. DS61145J-page 33

PIC32MX

16.2.6 WORD_PROGRAM COMMAND
The WORD_PROGRAM command instructs the PE to
program a 32-bit word of data at the specified address.

Expected Response (1 word):

FIGURE 16-11: WORD_PROGRAM
RESPONSE

16.2.7 CHIP_ERASE COMMAND
The CHIP_ERASE command erases the entire chip,
including the configuration block.

After the erase is performed, the entire Flash memory
contains 0xFFFF_FFFF.

Expected Response (1 word):

FIGURE 16-13: CHIP_ERASE RESPONSE

FIGURE 16-10: WORD_PROGRAM
COMMAND

31 16
Opcode

15 0
Length

31 16
Addr_High

15 0
Addr_Low

31 16
Data_High

15 0
Data_Low

TABLE 16-7: WORD_PROGRAM FORMAT

Field Description

Opcode 0x3
Length 2
Addr_High High 16 bits of 32-bit destination

address
Addr_Low Low 16 bits of 32-bit destination

address
Data_High High 16 bits data word
Data_Low Low 16 bits data word

31 16
Last Command

15 0
Response Code

FIGURE 16-12: CHIP_ERASE COMMAND
31 16

Opcode
15 0

Length

TABLE 16-8: CHIP_ERASE FORMAT

Field Description

Opcode 0x4
Length Ignored
Addr_Low Low 16 bits of 32-bit destination

address
Addr_High High 16 bits of 32-bit destination

address

31 16
Last Command

15 0
Response Code
DS61145J-page 34 © 2007-2011 Microchip Technology Inc.

PIC32MX

16.2.8 PAGE_ERASE COMMAND
The PAGE_ERASE command erases the specified
number of pages of code memory from the specified
base address. Depending on the device, the specified
base address must be a multiple of 0x400 or 0x100.

After the erase is performed, all targeted words of code
memory contain 0xFFFF_FFFF.

Expected Response (1 word):

FIGURE 16-15: PAGE_ERASE RESPONSE

16.2.9 BLANK_CHECK COMMAND
The BLANK_CHECK command queries the PE to
determine whether the contents of code memory and
code-protect Configuration bits (GCP and GWRP) are
blank (contains all ‘1’s).

Expected Response (1 word for blank device):

FIGURE 16-17: BLANK_CHECK RESPONSE

FIGURE 16-14: PAGE_ERASE COMMAND
31 16

Opcode
15 0

Length
31 16

Addr_High
15 0

Addr_Low

TABLE 16-9: PAGE_ERASE FORMAT

Field Description

Opcode 0x5
Length Number of pages to erase
Addr_Low Low 16 bits of 32-bit destination

address
Addr_High High 16 bits of 32-bit destination

address

31 16
Last Command

15 0
Response Code

FIGURE 16-16: BLANK_CHECK COMMAND
31 16

Opcode
15 0

Not Used
31 16

Addr_High
15 0

Addr_Low
31 16

Length_High
15 0

Length_Low

TABLE 16-10: BLANK_CHECK FORMAT

Field Description

Opcode 0x6
Length Number of program memory locations

to check in terms of bytes
Address Address where to start the Blank

Check

31 16
Last Command

15 0
Response Code
© 2007-2011 Microchip Technology Inc. DS61145J-page 35

PIC32MX

16.2.10 EXEC_VERSION COMMAND
EXEC_VERSION queries for the version of the PE
software stored in RAM.

Expected Response (1 word):

FIGURE 16-19: EXEC_VERSION
RESPONSE

16.2.11 GET_CRC COMMAND
GET_CRC calculates the CRC of the buffer from the
specified address to the specified length, using the
table look-up method. The CRC details are as follows:
• CRC-CCITT, 16-bit
• Polynomial: X^16+X^12+X^5+1, hex 0x00011021
• Seed: 0xFFFF
• Most Significant Byte (MSB) shifted in first

Expected Response (2 words):

FIGURE 16-21: GET_CRC RESPONSE

FIGURE 16-18: EXEC_VERSION
COMMAND

31 16

Opcode

15 0

Length

TABLE 16-11: EXEC_VERSION FORMAT

Field Description

Opcode 0x7

Length Ignored

31 16

Last Command

15 0

Version Number

Note 1: In the response, only the CRC Least
Significant 16 bits are valid.

2: The PE will automatically determine if the
hardware CRC is available and use it by
default. The hardware CRC is not
available on PIC32MX1XX/2XX devices.

FIGURE 16-20: GET_CRC COMMAND
31 16

Opcode

15 0

Not Used

31 16

Addr_High

15 0

Addr_Low

31 16

Length_High

15 0

Length_Low

TABLE 16-12: GET_CRC FORMAT

Field Description

Opcode 0x8

Address Address where to start calculating the
CRC

Length Length of buffer on which to calculate
the CRC, in number of bytes

31 16

Last Command

15 0

Response Code

31 16

CRC_High

15 0

CRC_Low
DS61145J-page 36 © 2007-2011 Microchip Technology Inc.

PIC32MX

16.2.12 PROGRAM_CLUSTER COMMAND
PROGRAM_CLUSTER programs the specified number of
bytes to the specified address. The address must be
32-bit aligned, and the number of bytes must be a
multiple of a 32-bit word.

Expected Response (1 word):

FIGURE 16-23: PROGRAM_CLUSTER
RESPONSE

16.2.13 GET_DEVICEID COMMAND
The GET_DEVICEID command returns the hardware
ID of the device.

Expected Response (1 word):

FIGURE 16-25: GET_DEVICEID
RESPONSE

FIGURE 16-22: PROGRAM_CLUSTER
COMMAND

31 16

Opcode

15 0

Not Used

31 16

Addr_High

15 0

Addr_Low

31 16

Length_High

15 0

Length_Low

TABLE 16-13: PROGRAM_CLUSTER FORMAT

Field Description

Opcode 0x9

Address Start address for programming

Length Length of area to program in number
of bytes

Note: If the PROGRAM_CLUSTER command fails,
the programmer should read the failing row
using the READ command from the Flash
memory. Next, the programmer should
compare the row received from Flash
memory to its local copy word-by-word to
determine the address where Flash
programming fails.

31 16

Last Command

15 0

Response Code

FIGURE 16-24: GET_DEVICEID
COMMAND

31 16

Opcode

15 0

Not Used

TABLE 16-14: GET_DEVICEID FORMAT
Field Description

Opcode 0xA

31 16

Last Command

15 0

Device ID
© 2007-2011 Microchip Technology Inc. DS61145J-page 37

PIC32MX

16.2.14 CHANGE_CFG COMMAND

Expected Response (1 word):

FIGURE 16-27: CHANGE_CFG RESPONSE

CHANGE_CFG is used by the probe to set various con-
figuration settings for the PE. Currently, the single con-
figuration setting determines which of the following
calculation methods the PE should use:

• Software CRC calculation method
• Hardware calculation method

FIGURE 16-26: CHANGE_CFG COMMAND
31 16

Opcode

15 0

Not Used

31 16

CRCFlag_High

15 0

CRCFlag_Low

TABLE 16-15: CHANGE_CFG FORMAT

Field Description

Opcode 0xB

CRCFlag If the value is ‘0’, the PE uses the
software CRC calculation method.
If the value is ‘1’, the PE uses the
hardware CRC unit to calculate the
CRC.

31 16

Last Command

15 0

Response Code

Note: The command, CHANGE_CFG, is not
available in PIC32MX1XX/2XX devices
since only software CRC is available.
DS61145J-page 38 © 2007-2011 Microchip Technology Inc.

PIC32MX
17.0 CHECKSUM

17.1 Theory
The checksum is calculated as the 32-bit summation of
all bytes (8-bit quantities) in program Flash, boot Flash
(except device Configuration Words), the Device ID
register with applicable mask, and the device Configu-
ration Words with applicable masks. Next, the 2’s
complement of the summation is calculated. This final
32-bit number is presented as the checksum.

17.2 Mask Values
The mask value of a device Configuration is calculated
by setting all the unimplemented bits to ‘0’ and all the
implemented bits to ‘1’.

For example, Register 17-1 shows the DEVCFG0 reg-
ister of the PIC32MX360F512L device. The mask value
for this register is:

mask_value_devcfg0 = 0x110FF00B

Table 17-1 lists the mask values of the four device Con-
figuration registers and Device ID registers to be used
in the checksum calculations.

REGISTER 17-1: DEVCFG0 REGISTER OF PIC32MX360F512L
Bit

Range
Bit

31/23/15/7
Bit

30/22/14/6
Bit

29/21/13/5
Bit

28/20/12/4
Bit

27/19/11/3
Bit

26/18/10/2
Bit

25/17/9/1
Bit

24/16/8/0

31:24
r-0 r-1 r-1 R/P-1 r-1 r-1 r-1 R/P-1

— — — CP — — — BWP

23:16
r-1 r-1 r-1 r-1 R/P-1 R/P-1 R/P-1 R/P-1

— — — — PWP19 PWP18 PWP17 PWP16

15:8
R/P-1 R/P-1 R/P-1 R/P-1 r-1 r-1 r-1 r-1

PWP15 PWP14 PWP13 PWP12 — — — —

7:0
r-1 r-1 r-1 r-1 R/P-1 r-1 R/P-1 R/P-1

— — — — ICESEL — DEBUG<1:0>

Legend: P = Programmable bit r = Reserved bit
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
© 2007-2011 Microchip Technology Inc. DS61145J-page 39

PIC32MX
TABLE 17-1: DEVICE CONFIGURATION REGISTER MASK VALUES OF CURRENTLY
SUPPORTED PIC32 DEVICES

Device DEVCFG0 DEVCFG1 DEVCFG2 DEVCFG3 DEVID

All PIC32MX1XX devices 0x1100FC1F 0x03DFF7A7 0x00078777 0xF0C0FFFF 0x0FFFF000
All PIC32MX2XX devices 0x1100FC1F 0x03DFF7A7 0x00078777 0xF0C0FFFF 0x0FFFF000
All PIC32MX3XX devices 0x110FF00B 0x009FF7A7 0x00070077 0x0000FFFF 0x000FF000
All PIC32MX4XX devices 0x110FF00B 0x009FF7A7 0x00078777 0x0000FFFF 0x000FF000

PIC32MX534F064H 0x110FF00F 0x009FF7A7 0x00078777 0xC407FFFF 0x0FFFF000
PIC32MX534F064L 0x110FF00F 0x009FF7A7 0x00078777 0xC407FFFF 0x0FFFF000
PIC32MX564F064H 0x110FF00F 0x009FF7A7 0x00078777 0xC407FFFF 0x0FFFF000
PIC32MX564F064L 0x110FF00F 0x009FF7A7 0x00078777 0xC407FFFF 0x0FFFF000
PIC32MX564F128H 0x110FF00F 0x009FF7A7 0x00078777 0xC407FFFF 0x0FFFF000
PIC32MX564F128L 0x110FF00F 0x009FF7A7 0x00078777 0xC407FFFF 0x0FFFF000
PIC32MX575F256H 0x110FF00F 0x009FF7A7 0x00078777 0xC407FFFF 0x000FF000
PIC32MX575F256L 0x110FF00F 0x009FF7A7 0x00078777 0xC407FFFF 0x000FF000
PIC32MX575F512H 0x110FF00F 0x009FF7A7 0x00078777 0xC407FFFF 0x000FF000
PIC32MX575F512L 0x110FF00F 0x009FF7A7 0x00078777 0xC407FFFF 0x000FF000

PIC32MX664F064H 0x110FF00F 0x009FF7A7 0x00078777 0xC307FFFF 0x0FFFF000
PIC32MX664F064L 0x110FF00F 0x009FF7A7 0x00078777 0xC307FFFF 0x0FFFF000
PIC32MX664F128H 0x110FF00F 0x009FF7A7 0x00078777 0xC307FFFF 0x0FFFF000
PIC32MX664F128L 0x110FF00F 0x009FF7A7 0x00078777 0xC307FFFF 0x0FFFF000
PIC32MX675F256H 0x110FF00F 0x009FF7A7 0x00078777 0xC307FFFF 0x000FF000
PIC32MX675F256L 0x110FF00F 0x009FF7A7 0x00078777 0xC307FFFF 0x000FF000
PIC32MX675F512H 0x110FF00F 0x009FF7A7 0x00078777 0xC307FFFF 0x000FF000
PIC32MX675F512L 0x110FF00F 0x009FF7A7 0x00078777 0xC307FFFF 0x000FF000
PIC32MX695F512H 0x110FF00F 0x009FF7A7 0x00078777 0xC307FFFF 0x000FF000
PIC32MX695F512L 0x110FF00F 0x009FF7A7 0x00078777 0xC307FFFF 0x000FF000

PIC32MX764F128H 0x110FF00F 0x009FF7A7 0x00078777 0xC707FFFF 0x0FFFF000
PIC32MX764F128L 0x110FF00F 0x009FF7A7 0x00078777 0xC707FFFF 0x0FFFF000
PIC32MX775F256H 0x110FF00F 0x009FF7A7 0x00078777 0xC707FFFF 0x000FF000
PIC32MX775F256L 0x110FF00F 0x009FF7A7 0x00078777 0xC707FFFF 0x000FF000
PIC32MX775F512H 0x110FF00F 0x009FF7A7 0x00078777 0xC707FFFF 0x000FF000
PIC32MX775F512L 0x110FF00F 0x009FF7A7 0x00078777 0xC707FFFF 0x000FF000
PIC32MX795F512H 0x110FF00F 0x009FF7A7 0x00078777 0xC707FFFF 0x000FF000
PIC32MX795F512L 0x110FF00F 0x009FF7A7 0x00078777 0xC707FFFF 0x000FF000
DS61145J-page 40 © 2007-2011 Microchip Technology Inc.

PIC32MX

17.3 Algorithm
An example of a high-level algorithm for calculating the
checksum for a PIC32 device is illustrated in Figure 17-1
to demonstrate one method to derive a checksum. This
is merely an example of how the actual calculations can
be accomplished, the method that is ultimately used is
left to the discretion of the software developer.

As stated earlier, the PIC32 checksum is calculated as
the 32-bit summation of all bytes (8-bit quantities) in
program Flash, boot Flash (except device
Configuration Words), the Device ID register with
applicable mask, and the device Configuration Words
with applicable masks.

Next, the 2’s complement of the summation is
calculated. This final 32-bit number is presented as the
checksum.

The mask values of the device Configuration and
Device ID registers are derived as described in the
previous section, Section 17.2 “Mask Values”.

Another noteworthy point is that the last four 32-bit
quantities in boot Flash are the device Configuration
registers. An arithmetic AND operation of these device
Configuration register values is performed with the
appropriate mask value, before adding their bytes to
the checksum.

Similarly, an arithmetic AND operation of the Device ID
register is performed with the appropriate mask value,
before adding its bytes to the checksum.

FIGURE 17-1: HIGH-LEVEL ALGORITHM FOR CHECKSUM CALCULATION

pic32_checksum

Read Program Flash, Boot Flash (including DEVCFG
registers) and DEVID register in tempBuffer

Apply DEVCFG and DEVID masks to appropriate
locations in tempBuffer

tmpChecksum (32-bit quantity) = 0

Finish processing all
bytes (8-bit quantities) in

tempBuffer?

tmpChecksum = tempChecksum + Current Byte Value
(8-bit quantity) in tmpBuffer

Checksum (32-bit quantity) = 2’s complement
of tmpChecksum

Done

No

Yes
© 2007-2011 Microchip Technology Inc. DS61145J-page 41

PIC32MX

The formula to calculate for the checksum for a PIC32
device is provided in Equation 17-1.

EQUATION 17-1: CHECKSUM FORMULA

17.4 Example of Checksum Calculation
The following sections 17.4.1- 17.4.5 demonstrate a
checksum calculation for the PIC32MX360F512L
device using Equation 17-1.

The following assumptions are made for the purpose of
this checksum calculation example:

• Program Flash and Boot Flash are in the erased
state (all bytes are 0xFF)

• Device Configuration is in the default state of the
device (no configuration changes are made)

To begin, each item on the right-hand side of the equa-
tion (PF, BF, DCR, DIR) is individually calculated. After
those values have been derived, the final value of the
checksum can be determined.

17.4.1 CALCULATING FOR “PF” IN THE
CHECKSUM FORMULA

The size of Program Flash is 512 KB, which equals
524288 bytes. Since the program Flash is assumed to
be in erased state, the value of “PF” is resolved through
the following calculation:

PF = 0xFF + 0xFF + … 524288 times

PF = 0x7F80000 (32-bit number)

17.4.2 CALCULATING FOR “BF” IN THE
CHECKSUM FORMULA

The size of the Boot Flash is 12 KB, which equals
12288 bytes. However, the last 16 bytes are device
Configuration registers, which are treated separately.
Therefore, the number of bytes in boot Flash that we
consider in this step is 12272. Since the boot Flash is
assumed to be in erased state, the value of “BF” is
resolved through the following calculation:

BF = 0xFF + 0xFF + … 12272 times

BF = 0x002FC010 (32-bit number)

17.4.3 CALCULATING FOR “DCR” IN THE
CHECKSUM FORMULA

Since the device Configuration registers are left in their
default state, the value of the appropriate DEVCFG
register – as read by the PIC32 core, its respective
mask value, the value derived from applying the mask,
and the 32-bit summation of bytes (all as shown in
Table 17-2) provide the total of the 32-bit summation of
bytes.

From Table 17-2, the value of “DCR” is:

DCR = 0x000005D4 (32-bit number)

Checksum 2′ s complement PF BF DCR DIR+ + +()=

DCR
3
Σ
X 0=

32-bit summation of bytes MASKDEVCFGX & DEVCFGx()=

DIR 32-bit summation of bytes MASKDEVID & DEVID()=

Where,

PF = 32-bit summation of all bytes in Program Flash

BF = 32-bit summation of all bytes in Boot Flash, except device Configuration registers

MASKDEVCFGX = mask value from Table 17-1

MASKDEVID = mask value from Table 17-1

TABLE 17-2: DCR CALCULATION EXAMPLE

Register POR Default Value Mask POR Default Value &
Mask

32-Bit Summation of
Bytes

DEVCFG0 0x7FFFFFFF 0x110FF00B 0x110FF00B 0x0000011B
DEVCFG1 0xFFFFFFFF 0x009FF7A7 0x009FF7A7 0x0000023D
DEVCFG2 0xFFFFFFFF 0x00070077 0x00070077 0x0000007E
DEVCFG3 0xFFFFFFFF 0x0000FFFF 0x0000FFFF 0x000001FE

Total of the 32-bit Summation of Bytes = 0x000005D4
DS61145J-page 42 © 2007-2011 Microchip Technology Inc.

PIC32MX

17.4.4 CALCULATING FOR “DIR” IN THE

CHECKSUM FORMULA
The value of Device ID register, its mask value, the
value derived from applying the mask, and the 32-bit
summation of bytes are shown in Table 17-3.

From Table 17-3, the value of “DIR” is:

DIR = 0x00000083 (32-bit number.)

17.4.5 COMPLETING THE PIC32
CHECKSUM CALCULATION

The values derived in previous sections (PF, BF, DCR,
DIR) are used to calculate the checksum value. First,
perform the 32-bit summation of the PF, BF, DCR and
DIR as derived in previous sections and store it in a
variable, called temp, as shown in Example 17-1.

EXAMPLE 17-1: CHECKSUM CALCULATION PROCESS

17.4.6 CHECKSUM VALUES WHILE
DEVICE IS CODE-PROTECTED

Since the device Configuration Words are not readable
while the PIC32 devices are in code-protected state,
the checksum values are zeros for all devices.

TABLE 17-3: DIR CALCULATION EXAMPLE

Register POR Default Value Mask POR Default Value
& Mask

32-Bit Summation of
Bytes

DEVID 0x00938053 0x000FF000 0x00038000 0x00000083

1. First, temp = PF + BF + DCR + DIR, which translates to:

temp = 0x7F80000 + 0x002FC010 + 0x000005D4 + 0x00000083

2. Adding all four values results in temp being equal to 0x0827C667
3. Next, the 1’s complement of temp, called temp1, is calculated:

temp1 = 1’s complement (temp), which is now equal to 0xF7D83998

4. Finally, the 2’s complement of temp is the checksum:

Checksum = 2’s complement (temp), which is Checksum = temp1 + 1, resulting in 0xF7D83999
© 2007-2011 Microchip Technology Inc. DS61145J-page 43

PIC32MX
18.0 CONFIGURATION MEMORY
AND DEVICE ID

PIC32MX devices include several features intended to
maximize application flexibility and reliability, and
minimize cost through elimination of external
components. These features are configurable through
specific configuration bits for each device. Refer to the
specific device data sheet for a full list of available
features and configuration bit settings.
Table 18-1 shows the Device ID register. See
Table 18-4 for a full list of Device ID and revision
number for specific devices.

18.1 Device Configuration
In PIC32MX devices, the Configuration Words select
various device configurations. These Configuration
Words are implemented as volatile memory registers
and must be loaded from the nonvolatile programmed
Configuration data mapped in the last four words
(32-bit x 4 words) of boot Flash memory, DEVCFG0-
DEVCFG3. These are the four locations an external
programming device programs with the appropriate
Configuration data (see Table 18-2 and Table 18-3).

TABLE 18-2: DEVCFG LOCATIONS

TABLE 18-3: DEVCFG LOCATIONS FOR
PIC32MX1X0 AND
PIC32MX20X DEVICES ONLY

On Power-on Reset (POR), or any Reset, the Configu-
ration Words are copied from the boot Flash memory to
their corresponding Configuration registers. A Configu-
ration bit can only be programmed = 0 (unprogrammed
state = 1).

During programming, a Configuration Word can be pro-
grammed a maximum of two times before a page erase
must be performed.

After programming the Configuration Words, the device
must be reset to ensure that the Configuration registers
are reloaded with the new programmed data.

18.1.1 CONFIGURATION REGISTER
PROTECTION

To prevent inadvertent Configuration bit changes dur-
ing code execution, all programmable Configuration
bits are write-once. After a bit is initially programmed
during a power cycle, it cannot be written to again.
Changing a device configuration requires changing the
Configuration data in the boot Flash memory, and
cycling power to the device.

To ensure integrity of the 128-bit data, a comparison is
made between each Configuration bit and its stored
complement continuously. If a mismatch is detected, a
Configuration Mismatch Reset is generated, which
causes a device Reset.

TABLE 18-1: DEVID SUMMARY
Virtual

Address Name Bit
Range

Bit
31/23/15/7

Bit
30/22/14/6

Bit
29/21/13/5

Bit
28/20/12/4

Bit
27/19/11/3

Bit
26/18/10/2

Bit
25/17/9/1

Bit
24/16/8/0

BF80_F220 DEVID 31:24 VER<3:0> DEVID<27:24>

23:16 DEVID<23:16>

15:8 DEVID<15:8>

7:0 DEVID<7:0>

Configuration Word Address

DEVCFG0 0xBFC0_2FFC
DEVCFG1 0xBFC0_2FF8
DEVCFG2 0xBFC0_2FF4
DEVCFG3 0xBFC0_2FF0

Configuration Word Address

DEVCFG0 0x1FC0_2FFC
DEVCFG1 0x1FC0_2FF8
DEVCFG2 0x1FC0_2FF4
DEVCFG3 0x1FC0_2FF0
DS61145J-page 44 © 2007-2011 Microchip Technology Inc.

PIC32MX
TABLE 18-4: DEVICE IDs AND REVISION
Device DEVID Register Value Revision ID and Silicon Revision

PIC32MX110F016B 0x04A07053 0x0 – A0 Revision
PIC32MX110F016C 0x04A09053
PIC32MX110F016D 0x04A0B053
PIC32MX120F032B 0x04A06053
PIC32MX120F032C 0x04A08053
PIC32MX120F032D 0x04A0A053
PIC32MX130F064B 0x04D07053
PIC32MX130F064C 0x04D09053
PIC32MX130F064D 0x04D0B053
PIC32MX150F128B 0x04D06053
PIC32MX150F128C 0x04D08053
PIC32MX150F128D 0x04D0A053
PIC32MX210F016B 0x04A01053
PIC32MX210F016C 0x04A03053
PIC32MX210F016D 0x04A05053
PIC32MX220F032B 0x04A00053
PIC32MX220F032C 0x04A02053
PIC32MX220F032D 0x04A04053
PIC32MX230F064B 0x04D01053
PIC32MX230F064C 0x04D03053
PIC32MX230F064D 0x04D05053
PIC32MX250F128B 0x04D00053
PIC32MX250F128C 0x04D02053
PIC32MX250F128D 0x04D04053
PIC32MX360F512L 0x0938053 0x3 – B2 Revision

0x4 – B3 Revision
0x5 – B4 Revision
0x5 – B6 Revision

PIC32MX360F256L 0x0934053
PIC32MX340F128L 0x092D053
PIC32MX320F128L 0x092A053
PIC32MX340F512H 0x0916053
PIC32MX340F256H 0x0912053
PIC32MX340F128H 0x090D053
PIC32MX320F128H 0x090A053
PIC32MX320F064H 0x0906053
PIC32MX320F032H 0x0902053
PIC32MX460F512L 0x0978053
PIC32MX460F256L 0x0974053
PIC32MX440F128L 0x096D053
PIC32MX440F256H 0x0952053
PIC32MX440F512H 0x0956053
PIC32MX440F128H 0x094D053
PIC32MX420F032H 0x0942053
© 2007-2011 Microchip Technology Inc. DS61145J-page 45

PIC32MX
18.2 Device Code-Protection Bit (CP)
The PIC32MX features a single device Code-Protec-
tion bit (CP). CP, when programmed = 0, protects boot
Flash and program Flash from being read or modified
by an external programming device. When code-
protection is enabled, only the Device ID and User ID
registers are available to be read by an external
programmer. However, Boot Flash and program Flash
memory are not protected from self-programming
during program execution when code-protection is
enabled.

18.3 Program Write-Protection Bits (PWP)
In addition to a device Code-Protection bit, the PIC32MX
also features Program Write-Protection bits (PWP) to
prevent boot Flash and program Flash memory regions
from being written during code execution.
Boot Flash memory is write-protected with a single
Configuration bit, BWP (DEVCFG0<24>), when
programmed = 0.

Program Flash memory can be write-protected entirely
or in selectable page sizes using Configuration bits
PWP<7:0> (BCFG0<19:12>). A page of program Flash
memory is 4096 bytes (1024 words) or 1024 bytes (256
words). The PWP bits represent the 1’s complement of
the number of protected pages. For example, program-
ming PWP bits = 0xFF selects 0 pages to be write-pro-
tected, effectively disabling the program Flash write
protection. Programming PWP bits = 0xFE selects the
first page to be write-protected. When enabled, the
write-protected memory range is inclusive from the
beginning of program Flash memory (0xBD00_0000)
up through the selected page.

The amount of program Flash memory available for
write protection depends on the family device variant.

PIC32MX795F512L 0x4307053 0x0 – A0 Revision
0x1 – A1 RevisionPIC32MX795F512H 0x430E053

PIC32MX775F512L 0x4306053
PIC32MX775F512H 0x430D053
PIC32MX775F256L 0x4312053
PIC32MX775F256H 0x4303053
PIC32MX764F128L 0x4417053
PIC32MX764F128H 0x440B053
PIC32MX695F512L 0x4341053
PIC32MX695F512H 0x4325053
PIC32MX675F512L 0x4311053
PIC32MX675F512H 0x430C053
PIC32MX675F256L 0x4305053
PIC32MX675F256H 0x430B053
PIC32MX664F128L 0x4413053
PIC32MX664F128H 0x4407053
PIC32MX664F064L 0x4411053
PIC32MX664F064H 0x4405053
PIC32MX575F512L 0x430F053
PIC32MX575F512H 0x4309053
PIC32MX575F256L 0x4333053
PIC32MX575F256H 0x4317053
PIC32MX564F128L 0x440F053
PIC32MX564F128H 0x4403053
PIC32MX564F064L 0x440D053
PIC32MX564F064H 0x4401053
PIC32MX534F064H 0x4400053
PIC32MX534F064L 0x440C053

TABLE 18-4: DEVICE IDs AND REVISION (CONTINUED)
Device DEVID Register Value Revision ID and Silicon Revision

Note: The PWP bits represent the 1’s
complement of the number of protected
pages.
DS61145J-page 46 © 2007-2011 Microchip Technology Inc.

PIC32MX
19.0 TAP CONTROLLERS

TABLE 19-1: MCHP TAP INSTRUCTIONS

19.1 Microchip TAP Controllers (MTAP)

19.1.1 MTAP_COMMAND INSTRUCTION
MTAP_COMMAND selects the MCHP Command Shift
register. See Table 19-2 for available commands.

19.1.1.1 MCHP_STATUS INSTRUCTION
MCHP_STATUS returns the 8-bit Status value of the
Microchip TAP controller. Table 19-3 shows the format
of the Status value returned.

19.1.1.2 MCHP_ASERT_RST INSTRUCTION
MCHP_ASERT_RST performs a persistent device
Reset. It is similar to asserting and holding MCLR with
the exception that test modes are not detected. Its
associated Status bit is DEVRST.

19.1.1.3 MCHP_DE_ASERT_RST
INSTRUCTION

MCHP_DE_ASERT_RST removes the persistent device
Reset. It is similar to de-asserting MCLR. Its associated
Status bit is DEVRST.

19.1.1.4 MCHP_ERASE INSTRUCTION
MCHP_ERASE performs a Chip Erase. The CHIP_
ERASE command sets an internal bit that requests the
Flash Controller to perform the erase. Once the control-
ler becomes busy, as indicated by FCBUSY (Status
bit), the internal bit is cleared.

19.1.1.5 MCHP_FLASH_ENABLE
INSTRUCTION

MCHP_FLASH_ENABLE sets the FAEN bit, which con-
trols processor accesses to the Flash memory. The
FAEN bit’s state is returned in the field of the same
name. This command has no effect if CPS = 0. This
command requires a NOP to complete.

19.1.1.6 MCHP_FLASH_DISABLE
INSTRUCTION

MCHP_FLASH_DISABLE clears the FAEN bit which
controls processor accesses to the Flash memory. The
FAEN bit’s state is returned in the field of the same
name. This command has no effect if CPS = 0. This
command requires a NOP to complete.

19.1.2 MTAP_SW_MTAP INSTRUCTION
MTAP_SW_MTAP switches the TAP instruction set to the
MCHP TAP instruction set.

19.1.3 MTAP_SW_ETAP INSTRUCTION
MTAP_SW_ETAP effectively switches the TAP instruc-
tion set to the EJTAG TAP instruction set. It does this
by holding the EJTAG TAP controller in the Run Test/
Idle state until a MTAP_SW_ETAP instruction is decoded
by the MCHP TAP controller.

19.1.4 MTAP_IDCODE INSTRUCTION
MTAP_IDCODE returns the value stored in the DEVID
register.

TABLE 19-2: MTAP_COMMAND DR COMMANDS

Command Value Description

MTAP_COMMAND 5’h07 TDI and TDO connected to MCHP Command Shift register (See Table 19-2).

MTAP_SW_MTAP 5’h04 Switch TAP controller to MCHP TAP controller.

MTAP_SW_ETAP 5’h05 Switch TAP controller to EJTAG TAP controller.

MTAP_IDCODE 5’h01 Select Chip Identification Data register.

Command Value Description

MCHP_STATUS 8’h00 NOP and return Status.

MCHP_ASERT_RST 8’hD1 Requests the reset controller to assert device Reset.

MCHP_DE_ASERT_RST 8’hD0 Removes the request for device Reset, which causes the reset
controller to de-assert device Reset if there is no other source
requesting Reset (i.e., MCLR).

MCHP_ERASE 8’hFC Cause the Flash controller to perform a Chip Erase.

MCHP_FLASH_ENABLE 8’hFE Enables fetches and loads to the Flash (from the processor).

MCHP_FLASH_DISABLE 8’hFD Disables fetches and loads to the Flash (from the processor).
© 2007-2011 Microchip Technology Inc. DS61145J-page 47

PIC32MX

TABLE 19-3: MCHP STATUS VALUE

TABLE 19-4: EJTAG TAP INSTRUCTIONS

Bit
Range Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

7:0 CPS 0 NVMERR(1) 0 CFGRDY FCBUSY FAEN DEVRST

bit 7 CPS: Code-Protect State bit
1 = Device is not code-protected
0 = Device is code-protected

bit 6 Unimplemented: Read as ‘0’
bit 5 NVMERR: NVMCON Status bit(1)

1 = An Error occurred during NVM operation
0 = An Error did not occur during NVM operation

bit 4 Unimplemented: Read as ‘0’
bit 3 CFGRDY: Code-Protect State bit

1 = Configuration has been read and CP is valid
0 = Configuration has not been read

bit 2 FCBUSY: Flash Controller Busy bit
1 = Flash controller is busy (Erase is in progress)
0 = Flash controller is not busy (either erase has not started or it has finished)

bit 1 FAEN: Flash Access Enable bit
This bit reflects the state of CFGCON.FAEN.
1 = Flash access is enabled
0 = Flash access is disabled (i.e., processor accesses are blocked)

bit 0 DEVRST: Device Reset State bit
1 = Device Reset is active
0 = Device Reset is not active

Note 1: This bit is available in PIC32MX1X0 and PIC32MX2X0 devices only.

Command Value Description

ETAP_ADDRESS 5’h08 Select Address register.

ETAP_DATA 5’h09 Select Data register.

ETAP_CONTROL 5’h0A Select EJTAG Control register.

ETAP_EJTAGBOOT 5’h0C Set EjtagBrk, ProbEn and ProbTrap to ‘1’ as Reset value.

ETAP_FASTDATA 5’h0E Selects the Data and Fastdata registers.
DS61145J-page 48 © 2007-2011 Microchip Technology Inc.

PIC32MX

19.2 EJTAG TAP Controller

19.2.1 ETAP_ADDRESS COMMAND
ETAP_ADDRESS selects the Address register. The
read-only Address register provides the address for a
processor access. The value read in the register is
valid if a processor access is pending, otherwise the
value is undefined.

The two or three Least Significant Bytes (LSBs) of the
register are used with the Psz field from the EJTAG
Control register to indicate the size and data position of
the pending processor access transfer. These bits are
not taken directly from the address referenced by the
load/store.

19.2.2 ETAP_DATA COMMAND
ETAP_DATA selects the Data register. The read/write
Data register is used for opcode and data transfers dur-
ing processor accesses. The value read in the Data
register is valid only if a processor access for a write is
pending, in which case the Data register holds the store
value. The value written to the Data register is only
used if a processor access for a pending read is fin-
ished afterwards; in which case, the data value written
is the value for the fetch or load. This behavior implies
that the Data register is not a memory location where a
previously written value can be read afterwards.

19.2.3 ETAP_CONTROL COMMAND
ETAP_CONTROL selects the Control register. The
EJTAG Control register (ECR) handles processor Reset
and soft Reset indication, Debug mode indication,
access start, finish and size, and read/write indication.
The ECR also provides the following features:

• Controls debug vector location and indication of
serviced processor accesses

• Allows a debug interrupt request
• Indicates processor Low-Power mode
• Allows implementation-dependent processor and

peripheral Resets

The EJTAG Control register is not updated/written in
the Update-DR state unless the Reset occurred; that is
ROCC (bit 31) is either already ‘0’ or is written to ‘0’ at
the same time. This condition ensures proper handling
of processor accesses after a Reset.

Reset of the processor can be indicated through the
ROCC bit in the TCK domain a number of TCK cycles
after it is removed in the processor clock domain in
order to allow for proper synchronization between the
two clock domains.

Bits that are R/W in the register return their written
value on a subsequent read, unless other behavior is
defined.

Internal synchronization ensures that a written value is
updated for reading immediately afterwards, even
when the TAP controller takes the shortest path from
the Update-DR to Capture-DR state.

19.2.4 ETAP_EJTAGBOOT COMMAND
The Reset value of the EjtagBrk, ProbTrap and ProbEn
bits follows the setting of the internal EJTAGBOOT
indication.

If the EJTAGBOOT instruction has been given, and the
internal EJTAGBOOT indication is active, then the
Reset value of the three bits is set (1), otherwise the
Reset value is clear (0).

The results of setting these bits are:

• Setting the EjtagBrk causes a Debug interrupt
exception to be requested right after the
processor Reset from the EJTAGBOOT instruction

• The debug handler is executed from the EJTAG
memory because ProbTrap is set to indicate
debug vector in EJTAG memory at 0x FF20 0200

• Service of the processor access is indicated
because ProbEn is set

Therefore, it is possible to execute the debug handler
right after a processor Reset from the EJTAGBOOT
instruction, without executing any instructions from the
normal Reset handler.
© 2007-2011 Microchip Technology Inc. DS61145J-page 49

PIC32MX

19.2.5 ETAP_FASTDATA COMMAND
The width of the Fastdata register is 1 bit. During a fast
data access, the Fastdata register is written and read
(i.e., a bit is shifted in and a bit is shifted out). During a
fast data access, the Fastdata register value shifted in
specifies whether the fast data access should be com-
pleted or not. The value shifted out is a flag that indi-
cates whether the fast data access was successful or
not (if completion was requested). The FASTDATA
access is used for efficient block transfers between the
DMSEG segment (on the probe) and target memory
(on the processor). An “upload” is defined as a
sequence that the processor loads from target memory
and stores to the DMSEG segment. A “download” is a
sequence of processor loads from the DMSEG seg-
ment and stores to target memory. The “Fastdata area”
specifies the legal range of DMSEG segment
addresses (0xFF20.0000-0xFF20.000F) that can be
used for uploads and downloads. The Data and Fast-
data registers (selected with the FASTDATA instruction)
allow efficient completion of pending Fastdata area
accesses.

During Fastdata uploads and downloads, the proces-
sor will stall on accesses to the Fastdata area. The
PrAcc (processor access pending bit) will be 1 indicat-
ing the probe is required to complete the access. Both
upload and download accesses are attempted by shift-
ing in a zero SPrAcc value (to request access comple-
tion) and shifting out SPrAcc to see if the attempt will be
successful (i.e., there was an access pending and a
legal Fastdata area address was used).

Downloads will also shift in the data to be used to
satisfy the load from the DMSEG segment Fastdata
area, while uploads will shift out the data being stored
to the DMSEG segment Fastdata area.

As noted above, two conditions must be true for the
Fastdata access to succeed. These are:

• PrAcc must be 1 (i.e., there must be a pending
processor access).

• The Fastdata operation must use a valid Fastdata
area address in the DMSEG segment
(0xFF20.0000 to 0xFF20.000F).
DS61145J-page 50 © 2007-2011 Microchip Technology Inc.

PIC32MX
20.0 AC/DC CHARACTERISTICS
AND TIMING REQUIREMENTS

TABLE 20-1: AC/DC CHARACTERISTICS AND TIMING REQUIREMENTS
Standard Operating Conditions
Operating Temperature: 0ºC to +70ºC. Programming at +25ºC is recommended.

Param.
No. Symbol Characteristic Min. Max. Units Conditions

D111 VDD Supply Voltage During Programming 2.3V 3.60 V Normal programming(1,2)

D112 IPP Programming Current on MCLR — 5 μA —
D113 IDDP Supply Current During Programming — 40 mA —
D114 IPEAK Instantaneous Peak Current During

Start-up
— 100 mA —

D031 VIL Input Low Voltage VSS 0.2 VDD V —
D041 VIH Input High Voltage 0.8 VDD VDD V —
D080 VOL Output Low Voltage — 0.4 V IOL = 8.5 mA @ 3.6V
D090 VOH Output High Voltage 1.4 — V IOH = -3.0 mA @ 3.6V
D012 CIO Capacitive Loading on I/O pin (PGDx) — 50 pF To meet AC specifications
D013 CF Filter Capacitor Value on VCAP 1 10 μF —
P1 TPGC Serial Clock (PGCx) Period 100 — ns —
P1A TPGCL Serial Clock (PGCx) Low Time 40 — ns —
P1B TPGCH Serial Clock (PGCx) High Time 40 — ns —

P6 TSET2 VDD ↑ Setup Time to MCLR ↑ 100 — ns —

P7 THLD2 Input Data Hold Time from MCLR ↑ 500 — ns —
P9A TDLY4 PE Command

Processing Time
40 — μs —

P9B TDLY5 Delay between PGDx ↓ by the PE to PGDx
Released by the PE

15 — μs —

P11 TDLY7 Chip Erase Time 80 — ms —
P12 TDLY8 Page Erase Time 20 — ms —
P13 TDLY9 Row Programming Time 2 — ms —

P14 TR MCLR Rise Time to Enter ICSP™ mode — 1.0 μs —
P15 TVALID Data Out Valid from PGCx ↑ 10 — ns —

P16 TDLY8 Delay between Last PGCx ↓ and MCLR ↓ 0 — s —

P17 THLD3 MCLR ↓ to VDD ↓ — 100 ns —

P18 TKEY1 Delay from First MCLR ↓ to First PGCx ↑
for Key Sequence on PGDx

40 — ns —

P19 TKEY2 Delay from Last PGCx ↓ for Key Sequence
on PGDx to Second MCLR ↑

40 — ns —

P20 TMCLRH MCLR High time — 500 µs —
Note 1: See Section 4.3 “Power Requirements” for more information.

2: VDD must also be supplied to the AVDD pins during programming. AVDD and AVSS should always be within
±0.3V of VDD and VSS, respectively.
© 2007-2011 Microchip Technology Inc. DS61145J-page 51

PIC32MX
APPENDIX A: PIC32MX FLASH
MEMORY MAP

FIGURE A-1: FLASH MEMORY MAP

APPENDIX B: HEX FILE FORMAT
Flash programmers process the standard HEX format
used by the Microchip development tools. The format
supported is the Intel® HEX32 Format (INHX32).
Please refer to Appendix A in the “MPASM Users
Guide” (DS33014) for more information about hex file
formats.

The basic format of the hex file is:
:BBAAAATTHHHH...HHHHCC

Each data record begins with a 9-character prefix and
always ends with a 2-character checksum. All records
begin with ‘:’, regardless of the format. The individual
elements are described below.

• BB - is a two-digit hexadecimal byte count
representing the number of data bytes that appear
on the line. Divide this number by two to get the
number of words per line.

• AAAA - is a four-digit hexadecimal address
representing the starting address of the data
record. Format is high byte first followed by low
byte. The address is doubled because this format
only supports 8 bits. Divide the value by two to
find the real device address.

• TT - is a two-digit record type that will be ‘00’ for
data records, ‘01’ for end-of-file records and ‘04’
for extended-address record.

• HHHH - is a four-digit hexadecimal data word.
Format is low byte followed by high byte. There
will be BB/2 data words following TT.

• CC - is a two-digit hexadecimal checksum that is
the 2’s complement of the sum of all the
preceding bytes in the line record.

Because the Intel hex file format is byte-oriented, and
the 16-bit program counter is not, program memory
sections require special treatment. Each 24-bit pro-
gram word is extended to 32 bits by inserting a so-
called “phantom byte”. Each program memory address
is multiplied by 2 to yield a byte address.

As an example, a section that is located at 0x100 in
program memory will be represented in the hex file as
0x200.

The hex file will be produced with the following
contents:

:020000040000fa
:040200003322110096
:00000001FF

Notice that the data record (line 2) has a load address
of 0200, while the source code specified address
0x100. Note also that the data is represented in “little-
endian” format, meaning the Least Significant Byte
appears first. The phantom byte appears last, just
before the checksum.

Boot Page 0

Boot Page 1

Boot Page 2
Debug Page

Configuration Words
(4 x 32 bits)

0x1F000000

0x1F001FFF

0x1F002FF0

0x1F002FFF

0x1D000000

Program Flash Memory

0x1D007FFF

PF
M

BF
M

Note: The memory map shown is for reference
only. Refer to the specific device data sheet
for the memory map for your device.
DS61145J-page 52 © 2007-2011 Microchip Technology Inc.

PIC32MX
APPENDIX C: REVISION HISTORY

Revision A (August 2007)
This is the initial released version of this document.

Revision B (February 2008)
Update records for this revision are not available.

Revision C (April 2008)
Update records for this revision are not available.

Revision D (May 2008)
Update records for this revision are not available.

Revision E (July 2009)
This version of the document includes the following
additions and updates:

• Minor changes to style and formatting have been
incorporated throughout the document

• Added the following devices:
- PIC32MX565F256H
- PIC32MX575F512H
- PIC32MX675F512H
- PIC32MX795F512H
- PIC32MX575F512L
- PIC32MX675F512L
- PIC32MX795F512L

• Updated MCLR pulse line to show active-high
(P20) in Figure 7-1

• Updated Step 7 of Table 11-1 to clarify repeat of
the last instruction in the step

• The following instructions in Table 13-1 were
updated:
- Seventh, ninth and eleventh instructions in

Step 1
- All instructions in Step 2
- First instruction in Step 3
- Third instruction in Step 4

• Added the following devices to Table 17-1:
- PIC32MX565F256H
- PIC32MX575F512H
- PIC32MX575F512L
- PIC32MX675F512H
- PIC32MX675F512L
- PIC32MX795F512H
- PIC32MX795F512L

• Updated address values in Table 17-2

Revision E (July 2009) (Continued)

• Added the following devices to Table 17-5:
- PIC32MX565F256H
- PIC32MX575F512H
- PIC32MX675F512H
- PIC32MX795F512H
- PIC32MX575F512L
- PIC32MX675F512L
- PIC32MX795F512L

• Added Notes 1-3 and the following bits to the
DEVCFG - Device Configuration Word Summary
and the DEVCFG3: Device Configuration Word 3
(see Table 18-1 and Register):
- FVBUSIO
- FUSBIDIO
- FCANIO
- FETHIO
- FMIIEN
- FPBDIV<1:0>
- FJTAGEN

• Updated the DEVID Summary (see Table 18-1)
• Updated ICESEL bit description and added the

FJTAGEN bit in DEVCFG0: Device Configuration
Word 0 (see Register 16-1)

• Updated DEVID: Device and Revision ID register
• Added Device IDs and Revision table (Table 18-4)
• Added MCLR High Time (parameter P20) to

Table 20-1
• Added Appendix B: “Hex File Format” and

Appendix D: “Revision History”

Revision F (April 2010)
This version of the document includes the following
additions and updates:

• The following global bit name changes were
made:
- NVMWR renamed as WR
- NVMWREN renamed as WREN
- NVMERR renamed as WRERR
- FVBUSIO renamed as FVBUSONIO
- FUPLLEN renamed as UPLLEN
- FUPLLIDIV renamed as UPLLIDIV
- POSCMD renamed as POSCMOD

• Updated the PIC32MX family data sheet
references in the fourth paragraph of Section 2.0
“Programming Overview”

• Updated the note in Section 5.2.2 “2-Phase
ICSP”

• Updated the Initiate Flash Row Write Opcodes and
instructions (see steps 4, 5 and 6 in Table 13-1)
© 2007-2011 Microchip Technology Inc. DS61145J-page 53

PIC32MX

Revision F (April 2010) (Continued)
• Added the following devices:

- PIC32MX534F064H
- PIC32MX534F064L
- PIC32MX564F064H
- PIC32MX564F064L
- PIC32MX564F128H
- PIC32MX564F128L
- PIC32MX575F256L
- PIC32MX664F064H
- PIC32MX664F064L
- PIC32MX664F128H
- PIC32MX664F128L
- PIC32MX675F256H
- PIC32MX675F256L
- PIC32MX695F512H
- PIC32MX605F512L
- PIC32MX764F128H
- PIC32MX764F128L
- PIC32MX775F256H
- PIC32MX775F256L
- PIC32MX775F512H
- PIC32MX775F512L

Revision G (August 2010)
This revision of the document includes the following
updates:

• Updated Step 3 in Table 11-1: Download the PE
• Minor corrections to formatting and text have

been incorporated throughout the document

Revision H (April 2011)
This version of the document includes the following
additions and updates:

• Updates to formatting and minor typographical
changes have been incorporated throughout the
document

• The following devices were added:
- PIC32MX110F016B
- PIC32MX110F016C
- PIC32MX110F016D
- PIC32MX120F032B
- PIC32MX120F032C
- PIC32MX120F032D
- PIC32MX210F016B
- PIC32MX210F016C
- PIC32MX210F016D
- PIC32MX220F032B
- PIC32MX220F032C
- PIC32MX220F032D

• The following rows were added to Table 17-1:
- PIC32MX1X0
- PIC32MX2X0

• Added a new sub section Section 17.4.6
“Checksum Values While Device Is Code-
Protected”

• Removed Register 18-1 through Register 18-5.
• Removed Table 17-2
• Removed Section 17.5 “Checksum for PIC32

Devices” and its sub sections
• The Flash Program Memory Write-Protect

Ranges table was removed (formerly Table 18-4)
• Added DEVCFG Locations for PIC32MX1X0 and

PIC32MX20X Devices Only (see Table 18-3)
• In Section 18.0 “Configuration Memory and

Device ID”, removed Table 18-1 and updated
Table 18-2: DEVID Summary as Table 18-1

• Added the NVMERR bit to the MCHP Status
Value table (see Table 19-3)

• The following Silicon Revision and Revision ID
are added to Table 18-4:
- 0x5 - B6 Revision
- 0x1 - A1 Revision

• Added a note to the Flash Memory Map (see
Figure A-1)

• Added Appendix C: “Flash Program Memory
Data Sheet Clarification”
DS61145J-page 54 © 2007-2011 Microchip Technology Inc.

PIC32MX

Revision J (August 2011)

This revision includes the following updates:

• All occurences of VCORE/VCAP have been changed
to VCAP

• Updated the fourth paragraph of Section 2.0
“Programming Overview”

• Removed the column, Programmer Pin Name, from
the 2-Wire Interface Pins table and updated the Pin
Type for MCLR (see Table 4-2)

• Added the following new devices to the Code
Memory Size table (see Table 5-1) and the Device
IDs and Revision table (see Table 18-4):
- PIC32MX130F064B
- PIC32MX130F064C
- PIC32MX130F064D
- PIC32MX150F128B
- PIC32MX150F128C
- PIC32MX150F128D
- PIC32MX230F064B
- PIC32MX230F064C
- PIC32MX230F064D
- PIC32MX250F128B
- PIC32MX250F128C
- PIC32MX250F128D

• Added Row Size and Page Size columns to the
Code Memory Size table (see Table 5-1)

• Updated the PGCx signal in Entering Enhanced
ICSP Mode (see Figure 7-1)

• Updated the Erase Device block diagram (see
Figure 9-1)

• Added a new step 4 to the process to erase a target
device in Section 9.0 “Erasing the Device”

• Updated the MCLR signal in 2-Wire Exit Test
Mode (see Figure 15-2)

• Updated the PE Command Set with the following
commands and modified Note 2 (see Table 16-2):
- PROGRAM_CLUSTER

- GET_DEVICEID

- CHANGE_CFG
• Added a second note to Section 16.2.11

“GET_CRC Command”
• Updated the Address and Length descriptions in the
PROGRAM_CLUSTER Format (see Table 16-13)

• Added a note after the CHANGE_CFG Response (see
Figure 16-27)

• Updated the DEVCFG0 and DEVCFG1 values for
All PIC32MX1XX and All PIC32MX2XX devices in
Table 17-1

• The following changes were made to the AC/DC
Characteristics and Timing Requirements
(Table 20-1):
- Updated the Minimum value for parameter

D111 (VDD)
- Added parameter D114 (IPEAK)
- Removed parameters P2, P3, P4, P4A, P5,

P8 and P10
• Removed Appendix C: “Flash Program Memory

Data Sheet Clarification”
• Minor updates to text and formatting were

incorporated throughout the document

Note: The revision history in this document
intentionally skips from Revision H to
Revision J to avoid confusing the
uppercase letter “I” (EY) with the
lowercase letter “l” (EL).
© 2007-2011 Microchip Technology Inc. DS61145J-page 55

PIC32MX

NOTES:
DS61145J-page 56 © 2007-2011 Microchip Technology Inc.

Note the following details of the code protection feature on Microchip devices:
• Microchip products meet the specification contained in their particular Microchip Data Sheet.

• Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the
intended manner and under normal conditions.

• There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.

• Microchip is willing to work with the customer who is concerned about the integrity of their code.

• Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not
mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.
Information contained in this publication regarding device
applications and the like is provided only for your convenience
and may be superseded by updates. It is your responsibility to
ensure that your application meets with your specifications.
MICROCHIP MAKES NO REPRESENTATIONS OR
WARRANTIES OF ANY KIND WHETHER EXPRESS OR
IMPLIED, WRITTEN OR ORAL, STATUTORY OR
OTHERWISE, RELATED TO THE INFORMATION,
INCLUDING BUT NOT LIMITED TO ITS CONDITION,
QUALITY, PERFORMANCE, MERCHANTABILITY OR
FITNESS FOR PURPOSE. Microchip disclaims all liability
arising from this information and its use. Use of Microchip
devices in life support and/or safety applications is entirely at
the buyer’s risk, and the buyer agrees to defend, indemnify and
hold harmless Microchip from any and all damages, claims,
suits, or expenses resulting from such use. No licenses are
conveyed, implicitly or otherwise, under any Microchip
intellectual property rights.
© 2007-2011 Microchip Technology Inc.
Trademarks

The Microchip name and logo, the Microchip logo, dsPIC,
KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART,
PIC32 logo, rfPIC and UNI/O are registered trademarks of
Microchip Technology Incorporated in the U.S.A. and other
countries.

FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor,
MXDEV, MXLAB, SEEVAL and The Embedded Control
Solutions Company are registered trademarks of Microchip
Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, chipKIT,
chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net,
dsPICworks, dsSPEAK, ECAN, ECONOMONITOR,
FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP,
Mindi, MiWi, MPASM, MPLAB Certified logo, MPLIB,
MPLINK, mTouch, Omniscient Code Generation, PICC,
PICC-18, PICDEM, PICDEM.net, PICkit, PICtail, REAL ICE,
rfLAB, Select Mode, Total Endurance, TSHARC,
UniWinDriver, WiperLock and ZENA are trademarks of
Microchip Technology Incorporated in the U.S.A. and other
countries.

SQTP is a service mark of Microchip Technology Incorporated
in the U.S.A.

All other trademarks mentioned herein are property of their
respective companies.

© 2007-2011, Microchip Technology Incorporated, Printed in
the U.S.A., All Rights Reserved.

 Printed on recycled paper.

ISBN: 978-1-61341-544-3
DS61145J-page 57

Microchip received ISO/TS-16949:2009 certification for its worldwide
headquarters, design and wafer fabrication facilities in Chandler and
Tempe, Arizona; Gresham, Oregon and design centers in California
and India. The Company’s quality system processes and procedures
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping
devices, Serial EEPROMs, microperipherals, nonvolatile memory and
analog products. In addition, Microchip’s quality system for the design
and manufacture of development systems is ISO 9001:2000 certified.

DS61145J-page 58 © 2007-2011 Microchip Technology Inc.

AMERICAS
Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
http://www.microchip.com/
support
Web Address:
www.microchip.com
Atlanta
Duluth, GA
Tel: 678-957-9614
Fax: 678-957-1455
Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088
Chicago
Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075
Cleveland
Independence, OH
Tel: 216-447-0464
Fax: 216-447-0643
Dallas
Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924
Detroit
Farmington Hills, MI
Tel: 248-538-2250
Fax: 248-538-2260
Indianapolis
Noblesville, IN
Tel: 317-773-8323
Fax: 317-773-5453
Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608
Santa Clara
Santa Clara, CA
Tel: 408-961-6444
Fax: 408-961-6445
Toronto
Mississauga, Ontario,
Canada
Tel: 905-673-0699
Fax: 905-673-6509

ASIA/PACIFIC
Asia Pacific Office
Suites 3707-14, 37th Floor
Tower 6, The Gateway
Harbour City, Kowloon
Hong Kong
Tel: 852-2401-1200
Fax: 852-2401-3431
Australia - Sydney
Tel: 61-2-9868-6733
Fax: 61-2-9868-6755
China - Beijing
Tel: 86-10-8569-7000
Fax: 86-10-8528-2104
China - Chengdu
Tel: 86-28-8665-5511
Fax: 86-28-8665-7889
China - Chongqing
Tel: 86-23-8980-9588
Fax: 86-23-8980-9500
China - Hangzhou
Tel: 86-571-2819-3187
Fax: 86-571-2819-3189
China - Hong Kong SAR
Tel: 852-2401-1200
Fax: 852-2401-3431
China - Nanjing
Tel: 86-25-8473-2460
Fax: 86-25-8473-2470
China - Qingdao
Tel: 86-532-8502-7355
Fax: 86-532-8502-7205
China - Shanghai
Tel: 86-21-5407-5533
Fax: 86-21-5407-5066
China - Shenyang
Tel: 86-24-2334-2829
Fax: 86-24-2334-2393
China - Shenzhen
Tel: 86-755-8203-2660
Fax: 86-755-8203-1760
China - Wuhan
Tel: 86-27-5980-5300
Fax: 86-27-5980-5118
China - Xian
Tel: 86-29-8833-7252
Fax: 86-29-8833-7256
China - Xiamen
Tel: 86-592-2388138
Fax: 86-592-2388130
China - Zhuhai
Tel: 86-756-3210040
Fax: 86-756-3210049

ASIA/PACIFIC
India - Bangalore
Tel: 91-80-3090-4444
Fax: 91-80-3090-4123
India - New Delhi
Tel: 91-11-4160-8631
Fax: 91-11-4160-8632
India - Pune
Tel: 91-20-2566-1512
Fax: 91-20-2566-1513
Japan - Yokohama
Tel: 81-45-471- 6166
Fax: 81-45-471-6122
Korea - Daegu
Tel: 82-53-744-4301
Fax: 82-53-744-4302
Korea - Seoul
Tel: 82-2-554-7200
Fax: 82-2-558-5932 or
82-2-558-5934
Malaysia - Kuala Lumpur
Tel: 60-3-6201-9857
Fax: 60-3-6201-9859
Malaysia - Penang
Tel: 60-4-227-8870
Fax: 60-4-227-4068
Philippines - Manila
Tel: 63-2-634-9065
Fax: 63-2-634-9069
Singapore
Tel: 65-6334-8870
Fax: 65-6334-8850
Taiwan - Hsin Chu
Tel: 886-3-5778-366
Fax: 886-3-5770-955
Taiwan - Kaohsiung
Tel: 886-7-536-4818
Fax: 886-7-330-9305
Taiwan - Taipei
Tel: 886-2-2500-6610
Fax: 886-2-2508-0102
Thailand - Bangkok
Tel: 66-2-694-1351
Fax: 66-2-694-1350

EUROPE
Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393
Denmark - Copenhagen
Tel: 45-4450-2828
Fax: 45-4485-2829
France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79
Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44
Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781
Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340
Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91
UK - Wokingham
Tel: 44-118-921-5869
Fax: 44-118-921-5820

Worldwide Sales and Service

08/02/11

http://support.microchip.com
http://www.microchip.com

	1.0 Device Overview
	2.0 Programming Overview
	FIGURE 2-1: Programming System Setup
	2.1 Assumptions

	3.0 Programming Steps
	FIGURE 3-1: Programming Flow

	4.0 Connecting to the Device
	FIGURE 4-1: Programming Interfaces
	4.1 4-Wire Interface
	TABLE 4-1: 4-Wire Interface Pins

	4.2 2-Wire Interface
	4.3 Power Requirements
	FIGURE 4-2: Connections for the On-Chip Regulator
	TABLE 4-2: 2-Wire Interface Pins

	5.0 EJTAG vs. ICSP
	FIGURE 5-1: TAP Controller
	FIGURE 5-2: Basic PIC32MX Programming Block
	TABLE 5-1: Code Memory Size (Continued)
	5.1 4-Wire JTAG Details
	FIGURE 5-3: 4-Wire JTAG Interface

	5.2 2-Wire ICSP Details
	FIGURE 5-4: 2-Wire, 4-Phase
	FIGURE 5-5: 2-Wire, 2-Phase

	6.0 Pseudo Operations
	6.1 SetMode Pseudo Operation
	FIGURE 6-1: SetMode 4-Wire
	FIGURE 6-2: SetMode 2-Wire

	6.2 SendCommand Pseudo Operation
	FIGURE 6-3: SendCommand 4-Wire
	FIGURE 6-4: SendCommand 2-Wire

	6.3 XferData Pseudo Operation
	FIGURE 6-5: XferData 4-Wire
	FIGURE 6-6: XferData 2-Wire (4-Phase)

	6.4 XferFastData Pseudo Operation
	EXAMPLE 6-1: SendCommand
	FIGURE 6-7: XferFastData 4-Wire
	FIGURE 6-8: XferFastData 2-Wire (2-Phase)
	FIGURE 6-9: XferFastData 2-Wire (4-Phase)

	6.5 XferInstruction Pseudo Operation
	EXAMPLE 6-2: XferInstruction

	7.0 Entering Programming Mode
	FIGURE 7-1: Entering Enhanced ICSP™ Mode

	8.0 Check Device Status
	FIGURE 8-1: Check Device Status
	8.1 4-Wire Interface
	8.2 2-Wire Interface

	9.0 Erasing the Device
	FIGURE 9-1: Erase Device
	9.1 Blank Check

	10.0 Entering Serial Execution Mode
	FIGURE 10-1: Entering Serial Execution Mode
	10.1 4-Wire Interface
	10.2 2-Wire Interface

	11.0 Downloading the Programming Executive (PE)
	FIGURE 11-1: Downloading the PE
	TABLE 11-1: Download the PE (Continued)
	TABLE 11-2: PE Loader Opcodes

	12.0 Downloading a Data Block
	12.1 Without the PE
	FIGURE 12-1: Downloading Data Without the PE
	TABLE 12-1: Download Data Opcodes

	12.2 With the PE
	FIGURE 12-2: Downloading Data With the PE

	13.0 Initiating a Flash Row Write
	13.1 With the PE
	13.2 Without the PE
	FIGURE 13-1: Initiating Flash Write Without the PE
	TABLE 13-1: Initiate Flash Row Write Opcodes (Continued)

	14.0 Verify Device Memory
	14.1 Verifying Memory with the PE
	FIGURE 14-1: Verifying Memory With the PE

	14.2 Verifying Memory without the PE
	FIGURE 14-2: Verifying Memory Without the PE
	TABLE 14-1: Verify Device Opcodes

	15.0 Exiting Programming Mode
	15.1 4-Wire Interface
	FIGURE 15-1: 4-Wire Exit Test Mode

	15.2 2-Wire Interface
	FIGURE 15-2: 2-Wire Exit Test Mode

	16.0 The Programming Executive
	16.1 PE Communication
	EXAMPLE 16-1: GetPEResponse Example
	TABLE 16-1: Communication Sequence for the PE

	16.2 The PE Command Set
	FIGURE 16-1: Command Format
	TABLE 16-2: PE Command Set
	FIGURE 16-2: Response Format
	TABLE 16-3: Response Values
	FIGURE 16-3: ROW_PROGRAM Command
	TABLE 16-4: Row_Program Format
	FIGURE 16-4: ROW_PROGRAM Response
	FIGURE 16-5: READ Command
	TABLE 16-5: Read Format
	FIGURE 16-6: READ Response
	FIGURE 16-7: PROGRAM Command
	TABLE 16-6: PROGRAM Format
	FIGURE 16-8: PROGRAM Response
	FIGURE 16-9: PROGRAM Command Algorithm
	FIGURE 16-10: Word_Program Command
	TABLE 16-7: Word_Program Format
	FIGURE 16-11: Word_Program Response
	FIGURE 16-12: Chip_Erase Command
	TABLE 16-8: Chip_Erase Format
	FIGURE 16-13: Chip_Erase Response
	FIGURE 16-14: Page_Erase Command
	TABLE 16-9: Page_Erase Format
	FIGURE 16-15: Page_Erase Response
	FIGURE 16-16: Blank_Check Command
	TABLE 16-10: Blank_Check Format
	FIGURE 16-17: Blank_Check Response
	FIGURE 16-18: Exec_Version Command
	TABLE 16-11: Exec_Version Format
	FIGURE 16-19: Exec_Version Response
	FIGURE 16-20: Get_CRC Command
	TABLE 16-12: Get_CRC Format
	FIGURE 16-21: Get_CRC Response
	FIGURE 16-22: Program_Cluster Command
	TABLE 16-13: Program_Cluster Format
	FIGURE 16-23: Program_Cluster Response
	FIGURE 16-24: Get_DeviceID Command
	TABLE 16-14: Get_DeviceID Format
	FIGURE 16-25: Get_DeviceID Response
	FIGURE 16-26: Change_CFG Command
	TABLE 16-15: Change_CFG Format
	FIGURE 16-27: Change_CFG Response

	17.0 Checksum
	17.1 Theory
	17.2 Mask Values
	Register 17-1: DEVCFG0 Register of PIC32MX360F512L
	TABLE 17-1: Device Configuration Register Mask Values of Currently Supported PIC32 Devices

	17.3 Algorithm
	FIGURE 17-1: High-Level Algorithm for Checksum Calculation
	EQUATION 17-1: Checksum Formula

	17.4 Example of Checksum Calculation
	TABLE 17-2: DCR Calculation Example
	TABLE 17-3: DIR Calculation Example
	EXAMPLE 17-1: Checksum Calculation Process

	18.0 Configuration Memory and Device ID
	TABLE 18-1: DEVID Summary
	18.1 Device Configuration
	TABLE 18-2: DEVCFG Locations
	TABLE 18-3: DEVCFG Locations for PIC32MX1X0 and PIC32MX20X Devices Only
	TABLE 18-4: Device IDs and Revision (Continued)

	18.2 Device Code-Protection Bit (CP)
	18.3 Program Write-Protection Bits (PWP)

	19.0 TAP Controllers
	TABLE 19-1: MCHP TAP Instructions
	19.1 Microchip TAP Controllers (MTAP)
	TABLE 19-2: MTAP_COMMAND DR Commands
	TABLE 19-3: MCHP STATUS Value
	TABLE 19-4: EJTAG TAP Instructions

	19.2 EJTAG TAP Controller

	20.0 AC/DC Characteristics and Timing Requirements
	TABLE 20-1: AC/DC Characteristics and Timing Requirements

	Appendix A: PIC32MX Flash Memory Map
	Appendix B: Hex File Format
	Appendix C: Revision History

