
SCLS387L - SEPTEMBER 1997 - REVISED OCTOBER 2010

- 2-V to 5.5-V V<sub>CC</sub> Operation
- Max t<sub>pd</sub> of 7 ns at 5 V
- Typical V<sub>OLP</sub> (Output Ground Bounce) <0.8 V at V<sub>CC</sub> = 3.3 V,  $T_A = 25^{\circ}C$
- Typical V<sub>OHV</sub> (Output V<sub>OH</sub> Undershoot)
  >2.3 V at V<sub>CC</sub> = 3.3 V, T<sub>A</sub> = 25°C
- Support Mixed-Mode Voltage Operation on All Ports
- I<sub>off</sub> Supports Partial-Power-Down Mode Operation
- Latch-Up Performance Exceeds 250 mA Per JESD 17
- ESD Protection Exceeds JESD 22
  - 2000-V Human-Body Model (A114-A)
  - 200-V Machine Model (A115-A)
  - 1000-V Charged-Device Model (C101)



#### description/ordering information

These quadruple 2-input positive-AND gates are designed for 2-V to 5.5-V V<sub>CC</sub> operation. The 'LV08A devices perform the Boolean function  $Y = A \bullet B$  or  $Y = \overline{\overline{A} + \overline{B}}$  in positive logic.

These devices are fully specified for partial-power-down applications using I<sub>off</sub>. The I<sub>off</sub> circuitry disables the outputs, preventing damaging current backflow through the devices when they are powered down.

| T <sub>A</sub> | PACK        | AGE <sup>†</sup> | ORDERABLE<br>PART NUMBER | TOP-SIDE<br>MARKING |  |  |  |
|----------------|-------------|------------------|--------------------------|---------------------|--|--|--|
|                | QFN – RGY   | Reel of 1000     | SN74LV08ARGYR            | LV08A               |  |  |  |
|                |             | Tube of 50       | SN74LV08AD               | 11/004              |  |  |  |
|                | SOIC – D    | Reel of 2500     | SN74LV08ADR              | LV08A               |  |  |  |
|                | SOP – NS    | Reel of 2000     | SN74LV08ANSR             | 74LV08A             |  |  |  |
| –40°C to 85°C  | SSOP – DB   | Reel of 2000     | SN74LV08ADBR             | LV08A               |  |  |  |
|                |             | Tube of 90       | SN74LV08APW              |                     |  |  |  |
|                | TSSOP – PW  | Reel of 2000     | SN74LV08APWRG3           | LV08A               |  |  |  |
|                |             | Reel of 250      | SN74LV08APWT             |                     |  |  |  |
|                | TVSOP – DGV | Reel of 2000     | SN74LV08ADGVR            | LV08A               |  |  |  |
|                | CDIP – J    | Tube of 25       | SNJ54LV08AJ              | SNJ54LV08AJ         |  |  |  |
| –55°C to 125°C | CFP – W     | Tube of 150      | SNJ54LV08AW              | SNJ54LV08AW         |  |  |  |
|                | LCCC – FK   | Tube of 55       | SNJ54LV08AFK             | SNJ54LV08AFK        |  |  |  |

#### **ORDERING INFORMATION**

<sup>†</sup> Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.



Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.



SCLS387L - SEPTEMBER 1997 - REVISED OCTOBER 2010

| FUNCTION TABLE<br>(each gate) |     |        |  |  |  |
|-------------------------------|-----|--------|--|--|--|
| INP                           | JTS | OUTPUT |  |  |  |
| Α                             | В   | Y      |  |  |  |
| Н                             | Н   | Н      |  |  |  |
| L                             | Х   | L      |  |  |  |
| Х                             | L   | L      |  |  |  |

### logic diagram, each gate (positive logic)



### absolute maximum ratings over operating free-air temperature range (unless otherwise noted)<sup>†</sup>

| Supply voltage range, V_{CC}                                                             |    |
|------------------------------------------------------------------------------------------|----|
| Input voltage range, VI (see Note 1)–0.5 V to 7                                          | V  |
| Voltage range applied to any output in the high-impedance                                |    |
| or power-off state, V <sub>O</sub> (see Note 1)0.5 V to 7                                | V  |
| Output voltage range, V <sub>0</sub> (see Notes 1 and 2)0.5 V to V <sub>CC</sub> + 0.5   | V  |
| Input clamp current, I <sub>IK</sub> (V <sub>I</sub> < 0)                                |    |
| Output clamp current, I <sub>OK</sub> (V <sub>O</sub> < 0)                               | ۱A |
| Continuous output current, I <sub>O</sub> (V <sub>O</sub> = 0 to V <sub>CC</sub> ) ±25 m | ۱A |
| Continuous current through V <sub>CC</sub> or GND ±50 m                                  | ۱A |
| Package thermal impedance, θ <sub>JA</sub> (see Note 3): D package                       | W  |
| (see Note 3): DB package                                                                 | W  |
| (see Note 3): DGV package                                                                | W  |
| (see Note 3): NS package                                                                 | W  |
| (see Note 3): PW package                                                                 | W  |
| (see Note 4): RGY package                                                                | W  |
| Storage temperature range, T <sub>stg</sub> 65°C to 150°                                 | ,C |

<sup>†</sup> Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

- NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output current ratings are observed. 2. This value is limited to 5.5 V maximum.

  - 3. The package thermal impedance is calculated in accordance with JESD 51-7.
  - 4. The package thermal impedance is calculated in accordance with JESD 51-5.



SCLS387L - SEPTEMBER 1997 - REVISED OCTOBER 2010

|                 |                                    |                                | SN54L               | _V08A               | SN74L              | V08A                  |      |
|-----------------|------------------------------------|--------------------------------|---------------------|---------------------|--------------------|-----------------------|------|
|                 |                                    |                                | MIN                 | MAX                 | MIN                | MAX                   | UNIT |
| $V_{CC}$        | Supply voltage                     |                                | 2                   | 5.5                 | 2                  | 5.5                   | V    |
|                 |                                    | V <sub>CC</sub> = 2 V          | 1.5                 |                     | 1.5                |                       |      |
|                 |                                    | $V_{CC}$ = 2.3 V to 2.7 V      | $V_{CC} 	imes 0.7$  |                     | $V_{CC} 	imes 0.7$ |                       |      |
| VIH             | High-level input voltage           | V <sub>CC</sub> = 3 V to 3.6 V | $V_{CC} \times 0.7$ |                     | $V_{CC} 	imes 0.7$ |                       | V    |
|                 |                                    | $V_{CC}$ = 4.5 V to 5.5 V      | $V_{CC} \times 0.7$ |                     | $V_{CC} 	imes 0.7$ |                       |      |
|                 |                                    | V <sub>CC</sub> = 2 V          |                     | 0.5                 |                    | 0.5                   |      |
| .,              |                                    | $V_{CC}$ = 2.3 V to 2.7 V      |                     | $V_{CC} 	imes 0.3$  |                    | $V_{CC}\!\times\!0.3$ |      |
| V <sub>IL</sub> | Low-level input voltage            | V <sub>CC</sub> = 3 V to 3.6 V |                     | $V_{CC} 	imes 0.3$  |                    | $V_{CC}\!\times\!0.3$ | V    |
|                 |                                    | $V_{CC}$ = 4.5 V to 5.5 V      |                     | $V_{CC} \times 0.3$ |                    | $V_{CC}\!\times\!0.3$ |      |
| VI              | Input voltage                      |                                | 0                   | 5.5                 | 0                  | 5.5                   | V    |
| Vo              | Output voltage                     |                                | 0                   | ✓ V <sub>CC</sub>   | 0                  | V <sub>CC</sub>       | V    |
|                 |                                    | V <sub>CC</sub> = 2 V          | S                   | -50                 |                    | -50                   | μA   |
|                 |                                    | $V_{CC}$ = 2.3 V to 2.7 V      | 00                  | -2                  |                    | -2                    |      |
| I <sub>OH</sub> | High-level output current          | V <sub>CC</sub> = 3 V to 3.6 V | A A                 | -6                  |                    | -6                    | mA   |
|                 |                                    | $V_{CC}$ = 4.5 V to 5.5 V      |                     | -12                 |                    | -12                   |      |
|                 |                                    | V <sub>CC</sub> = 2 V          |                     | 50                  |                    | 50                    | μA   |
|                 |                                    | $V_{CC}$ = 2.3 V to 2.7 V      |                     | 2                   |                    | 2                     |      |
| I <sub>OL</sub> | Low-level output current           | V <sub>CC</sub> = 3 V to 3.6 V |                     | 6                   |                    | 6                     | mA   |
|                 |                                    | $V_{CC}$ = 4.5 V to 5.5 V      |                     | 12                  |                    | 12                    |      |
|                 |                                    | $V_{CC}$ = 2.3 V to 2.7 V      |                     | 200                 |                    | 200                   |      |
| Δt/Δv           | Input transition rise or fall rate | V <sub>CC</sub> = 3 V to 3.6 V |                     | 100                 |                    | 100                   | ns/V |
|                 |                                    | $V_{CC}$ = 4.5 V to 5.5 V      |                     | 20                  |                    | 20                    |      |
| T <sub>A</sub>  | Operating free-air temperature     |                                | -55                 | 125                 | -40                | 85                    | °C   |

### recommended operating conditions (see Note 5)

NOTE 5: All unused inputs of the device must be held at V<sub>CC</sub> or GND to ensure proper device operation. Refer to the TI application report, *Implications of Slow or Floating CMOS Inputs*, literature number SCBA004.

# electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

|                  |                                         |                 | SN5                  | 4LV08A  | SN7                  | 4LV08A  |      |
|------------------|-----------------------------------------|-----------------|----------------------|---------|----------------------|---------|------|
| PARAMETER        | TEST CONDITIONS                         | V <sub>cc</sub> | MIN                  | ΤΥΡ ΜΑλ | ( MIN                | TYP MAX | UNIT |
|                  | I <sub>OH</sub> = -50 μA                | 2 V to 5.5 V    | V <sub>CC</sub> -0.1 |         | V <sub>CC</sub> -0.1 |         |      |
| N/               | $I_{OH} = -2 \text{ mA}$                | 2.3 V           | 2                    |         | 2                    |         | v    |
| V <sub>OH</sub>  | I <sub>OH</sub> = -6 mA                 | 3 V             | 2.48                 |         | 2.48                 |         | v    |
|                  | I <sub>OH</sub> = -12 mA                | 4.5 V           | 3.8                  | M       | 3.8                  |         |      |
|                  | I <sub>OL</sub> = 50 μA                 | 2 V to 5.5 V    |                      | 0.      |                      | 0.1     |      |
| N/               | I <sub>OL</sub> = 2 mA                  | 2.3 V           |                      | Q 0.4   | 1                    | 0.4     | v    |
| V <sub>OL</sub>  | I <sub>OL</sub> = 6 mA                  | 3 V             | ć                    | 0.4     | 1                    | 0.44    | v    |
|                  | I <sub>OL</sub> = 12 mA                 | 4.5 V           | ng                   | 0.5     | 5                    | 0.55    |      |
| I <sub>I</sub>   | $V_{I} = 5.5 V \text{ or GND}$          | 0 to 5.5 V      | 04                   | Ŧ       |                      | ±1      | μA   |
| I <sub>CC</sub>  | $V_{I} = V_{CC}$ or GND, $I_{O} = 0$    | 5.5 V           | Q                    | 20      | )                    | 20      | μA   |
| I <sub>off</sub> | $V_{I}$ or $V_{O}$ = 0 to 5.5 V         | 0               |                      | Į       | 5                    | 5       | μA   |
| C <sub>i</sub>   | V <sub>I</sub> = V <sub>CC</sub> or GND | 3.3 V           |                      | 3.3     |                      | 3.3     | pF   |
| Ui               |                                         | 5 V             |                      | 3.3     |                      | 3.3     | ΡF   |

PRODUCT PREVIEW information concerns products in the formative or design phase of development. Characteristic data and other specifications are design goals. Texas Instruments reserves the right to change or discontinue these products without notice.



SCLS387L - SEPTEMBER 1997 - REVISED OCTOBER 2010

# switching characteristics over recommended operating free-air temperature range, $V_{CC}$ = 2.5 V $\pm$ 0.2 V (unless otherwise noted) (see Figure 1)

| DADAMETED       | FROM    | то       | LOAD                   | T,  | ₄ = 25°C | ;     | SN54LV08A     | SN74L | V08A |      |
|-----------------|---------|----------|------------------------|-----|----------|-------|---------------|-------|------|------|
| PARAMETER       | (INPUT) | (OUTPUT) | CAPACITANCE            | MIN | TYP      | MAX   | MIN           | MIN   | MAX  | UNIT |
| + .             | A or B  | V        | C <sub>L</sub> = 15 pF |     | 7.9*     | 13.8* | 1* 17*        | 1     | 16   |      |
| <sup>t</sup> pd | AULP    | ſ        | C <sub>L</sub> = 50 pF |     | 10.5     | 17.3  | <b>2</b> 1 21 | 1     | 20   | ns   |

\* On products compliant to MIL-PRF-38535, this parameter is not production tested.

# switching characteristics over recommended operating free-air temperature range, $V_{CC}$ = 3.3 V $\pm$ 0.3 V (unless otherwise noted) (see Figure 1)

| DADAMETER | FROM    | то       | LOAD                   | T   | <sub>A</sub> = 25°C | ;    | SN54LV08A        | SN74L | V08A |      |
|-----------|---------|----------|------------------------|-----|---------------------|------|------------------|-------|------|------|
| PARAMETER | (INPUT) | (OUTPUT) | CAPACITANCE            | MIN | TYP                 | MAX  | MIN MAX          | MIN   | MAX  | UNIT |
| + .       | A or B  | v        | C <sub>L</sub> = 15 pF |     | 5.6*                | 8.8* | <b>1</b> * 11.5* | 1     | 10.5 |      |
| Lpd       | AOIB    | Ť        | C <sub>L</sub> = 50 pF |     | 7.5                 | 12.3 | 15               | 1     | 14   | ns   |

\* On products compliant to MIL-PRF-38535, this parameter is not production tested.

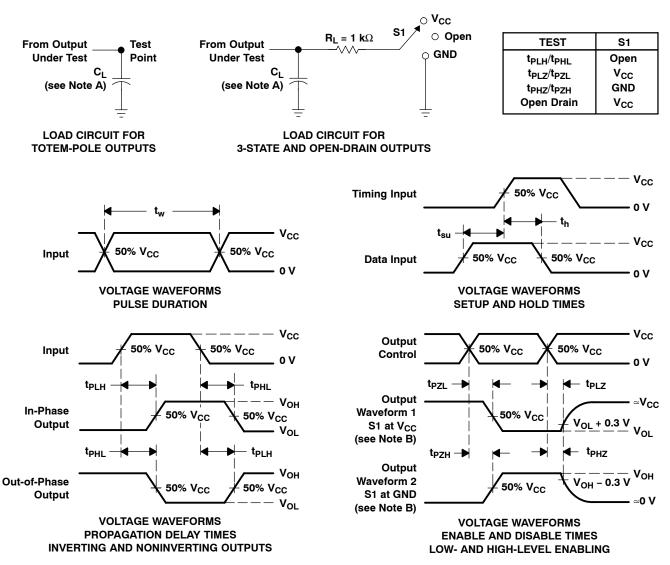
# switching characteristics over recommended operating free-air temperature range, $V_{CC}$ = 5 V $\pm$ 0.5 V (unless otherwise noted) (see Figure 1)

| DADAMETER       | FROM    | то       | LOAD                   | T,  | <sub>A</sub> = 25°C | ;    | SN54LV08A     | SN74L | V08A |      |
|-----------------|---------|----------|------------------------|-----|---------------------|------|---------------|-------|------|------|
| PARAMETER       | (INPUT) | (OUTPUT) | CAPACITANCE            | MIN | TYP                 | MAX  | MIN MAX       | MIN   | MAX  | UNIT |
| + .             | A or B  | v        | C <sub>L</sub> = 15 pF |     | 4.1*                | 5.9* | <b>1</b> * 8* | 1     | 7    |      |
| <sup>L</sup> pd | AUB     | T        | C <sub>L</sub> = 50 pF |     | 5.5                 | 7.9  | <b>1</b> 0    | 1     | 9    | ns   |

\* On products compliant to MIL-PRF-38535, this parameter is not production tested.

### noise characteristics, $V_{CC}$ = 3.3 V, $C_L$ = 50 pF, $T_A$ = 25°C (see Note 6)

|                    |                                               | SN   | 74LV08 | Α    |      |
|--------------------|-----------------------------------------------|------|--------|------|------|
|                    | PARAMETER                                     |      |        |      | UNIT |
| V <sub>OL(P)</sub> | Quiet output, maximum dynamic V <sub>OL</sub> |      | 0.2    | 0.8  | V    |
| V <sub>OL(V)</sub> | Quiet output, minimum dynamic V <sub>OL</sub> |      | -0.1   | -0.8 | V    |
| V <sub>OH(V)</sub> | Quiet output, minimum dynamic V <sub>OH</sub> |      | 3.1    |      | V    |
| V <sub>IH(D)</sub> | High-level dynamic input voltage              | 2.31 |        |      | V    |
| V <sub>IL(D)</sub> | Low-level dynamic input voltage               |      |        | 0.99 | V    |


NOTE 6: Characteristics are for surface-mount packages only.

### operating characteristics, $T_A = 25^{\circ}C$

|   | PARAMETER |                               | TEST CO                 | V <sub>CC</sub> | TYP   | UNIT |    |
|---|-----------|-------------------------------|-------------------------|-----------------|-------|------|----|
| ſ | <u> </u>  | Dever dissinction conscitutes | С <u>50</u> рГ          | f = 10 MHz      | 3.3 V | 8    | ۶G |
|   | Cpd       | Power dissipation capacitance | C <sub>L</sub> = 50 pF, |                 | 5 V   | 10   | рг |



SCLS387L - SEPTEMBER 1997 - REVISED OCTOBER 2010



### PARAMETER MEASUREMENT INFORMATION

NOTES: A. C<sub>L</sub> includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR  $\leq$  1 MHz, Z<sub>0</sub> = 50  $\Omega$ , t<sub>r</sub>  $\leq$  3 ns, t<sub>f</sub>  $\leq$  3 ns.
- D. The outputs are measured one at a time, with one input transition per measurement.
- E. t<sub>PLZ</sub> and t<sub>PHZ</sub> are the same as t<sub>dis</sub>.
- F.  $t_{PZL}$  and  $t_{PZH}$  are the same as  $t_{en}$ .
- G.  $t_{PHL}$  and  $t_{PLH}$  are the same as  $t_{pd}$ .
- H. All parameters and waveforms are not applicable to all devices.

#### Figure 1. Load Circuit and Voltage Waveforms



#### **IMPORTANT NOTICE**

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

| Products                    |                        | Applications                     |                                   |
|-----------------------------|------------------------|----------------------------------|-----------------------------------|
| Audio                       | www.ti.com/audio       | Communications and Telecom       | www.ti.com/communications         |
| Amplifiers                  | amplifier.ti.com       | Computers and Peripherals        | www.ti.com/computers              |
| Data Converters             | dataconverter.ti.com   | Consumer Electronics             | www.ti.com/consumer-apps          |
| DLP® Products               | www.dlp.com            | Energy and Lighting              | www.ti.com/energy                 |
| DSP                         | dsp.ti.com             | Industrial                       | www.ti.com/industrial             |
| Clocks and Timers           | www.ti.com/clocks      | Medical                          | www.ti.com/medical                |
| Interface                   | interface.ti.com       | Security                         | www.ti.com/security               |
| Logic                       | logic.ti.com           | Space, Avionics and Defense      | www.ti.com/space-avionics-defense |
| Power Mgmt                  | power.ti.com           | Transportation and<br>Automotive | www.ti.com/automotive             |
| Microcontrollers            | microcontroller.ti.com | Video and Imaging                | www.ti.com/video                  |
| RFID                        | www.ti-rfid.com        | Wireless                         | www.ti.com/wireless-apps          |
| RF/IF and ZigBee® Solutions | www.ti.com/lprf        |                                  |                                   |

**TI E2E Community Home Page** 

e2e.ti.com

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2011, Texas Instruments Incorporated