

SN54ALS808A, SN54AS808B, SN74ALS808A, SN74AS808B

Hex 2-Input and Drivers

The SN74ALS808A and SN54AS808B are characterized for operation over the full military temperature range of -55°C to 125°C while the SN74ALS808A and SN74AS808B are characterized for operation from 0°C to 70°C. These devices contain six independent 2-input AND drivers. They perform the Boolean functions $Y = A \cdot B$ or $Y = \overline{A} + \overline{B}$ in positive logic.

Rochester Electronics Manufactured Components

Rochester branded components are manufactured using either die/wafers purchased from the original suppliers or Rochester wafers recreated from the original IP. All recreations are done with the approval of the OCM.

Parts are tested using original factory test programs or Rochester developed test solutions to guarantee product meets or exceeds the OCM data sheet.

Quality Overview

- ISO-9001
- AS9120 certification
- Qualified Manufacturers List (QML) MIL-PRF-38535
 - Class Q Military
 - Class V Space Level
- Qualified Suppliers List of Distributors (QSLD)
 - Rochester is a critical supplier to DLA and meets all industry and DLA standards.

Rochester Electronics, LLC is committed to supplying products that satisfy customer expectations for quality and are equal to those originally supplied by industry manufacturers.

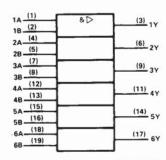
The original manufacturer's datasheet accompanying this document reflects the performance and specifications of the Rochester manufactured version of this device. Rochester Electronics guarantees the performance of its semiconductor products to the original OEM specifications. 'Typical' values are for reference purposes only. Certain minimum or maximum ratings may be based on product characterization, design, simulation, or sample testing.

D2661, DECEMBER 1982 - REVISED MAY 1986

High Capacitive Drive Capability

- 'ALS808A has Typical Delay Time of 4.8 ns (CL = 50 pF) and Typical Power Dissipation of 4.5 mW per Gate
- 'AS808B has Typical Delay Time of 3.2 ns (CL = 50 pF) and Typical Power Dissipation of Less than 13 mW per Gate
- Package Options Include Plastic "Small Outline" Packages, Ceramic Chip Carriers, and Standard Plastic and Ceramic 300-mil
- Dependable Texas Instruments Quality and Reliability

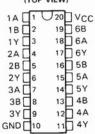
description

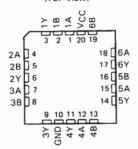

These devices contain six independent 2-input AND drivers. They perform the Boolean functions $Y = A \cdot B$ or $Y = \overline{A} + \overline{B}$ in positive logic.

The SN54ALS808A and SN54AS808B are characterized for operation over the full military temperature range of -55°C to 125°C. The SN74ALS808A and SN74AS808B are characterized for operation from 0°C to 70°C.

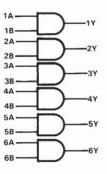
FUNCTION TABLE (each driver)

INP	UTS	OUTPUT
A	В	Y
н	Н	н
L	X	L
X	L	L


logic symbol†


[†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

SN54ALS808A, SN54AS808B . . . J PACKAGE SN74ALS808A, SN74AS808B . . . DW OR N PACKAGE (TOP VIEW)


SN54ALS808A, SN54AS808B, SN74ALS808A, SN74AS808B

SN54ALS808A, SN54AS808B . . . FK PACKAGE

logic diagram (positive logic)

absolute maximum ratings over operati	ing free-air temperature range (unless otherwise noted)
Supply voltage, VCC	7 V
input voitage	· · · · · · · · · · · · · · · · · · ·
Operating free-air temperature range:	SN54ALS808A 55 °C to 125 °C
	SN74ALS808A 0°C to 70°C
Storage temperature range	- 65°C to 150°C

recommended operating conditions

		SN54ALS808A			SN	T		
		MIN	NOM	MAX	MIN	NOM	MAX	UNIT
Vcc	Supply voltage	4.5	5	5.5	4.5	5	5.5	v
VIH	High-level input voltage	2			2			V
VIL	Low-level input voltage			0.7			0.8	v
Іон	High-level output current		-12		7700000		- 15	mA
OL	Low-level output current		10.00	12			24	mA
TA	Operating free-air temperature	-55		125	0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise

PARAMETER	TEST CONDITIONS		SN54ALS808A			SN			
	7237 661657	110143	MIN	TYP [†]	MAX	MIN	TYP	MAX	UNI
VIK	$V_{CC} = 4.5 V$,	I _I = -18 mA			-1.2			-1.2	V
	$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V},$	$I_{OH} = -0.4 \text{ mA}$	- Vcc-2			Vcc-2			1
	$V_{CC} = 4.5 \text{ V},$	IOH = -3 mA	2.4	3.2		2.4	3.2		1
∨он	V _{CC} = 4.5 V,	IOH = -12 mA	2				110000		l v
	$V_{CC} = 4.5 V$,	$I_{OL} = -15 \text{ mA}$				2	-		1
VOL	V _{CC} = 4.5 V,	IOL = 12 mA		0.25	0.4		0.25	0.4	-
_ *0L	V _{CC} = 4.5 V,	IOL = 24 mA					0.35	0.5	V
lį .	V _{CC} = 5.5 V,	V ₁ = 7 V			0.1			0.1	mA
lH l	V _{CC} = 5.5 V,	V _I = 2.7 V			20		-	20	μΑ
IIL	V _{CC} = 5.5 V,	V ₁ = 0.4 V			-0.1	_		-0.1	mA
10 [‡]	V _{CC} = 5.5 V,	VO = 2.25 V	- 30	-	-112	-30		-112	mA
ICCH	V _{CC} = 5.5 V,	V _I = 4.5 V		4.5	7	- 00	4.5	7	mA
CCL	V _{CC} = 5.5 V,	V _I = 0 V		8	16		8	16	mA

switching characteristics (see note 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	$V_{CC} = 5 \text{ V}.$ $C_{L} \approx 50 \text{ pF}.$ $R_{L} = 500 \Omega.$ $T_{A} = 25 ^{\circ}\text{C}$	C R	CC = 4.5 $C_L = 50 \text{ pF}$ $C_L = 500 \Omega$ $C_A = MIN \text{ to}$		y	UNI
			'ALS808A	SN54A	LS808A	SN74AI	LS808A	1
			TYP	MIN	MAX	MIN	MAX	1
tPLH	A or B	V	6	2	11	2	9	
tPHL .	7,016		4	1	10	1		ns

NOTE 1: Load circuit and voltage waveforms are shown in Section 1.

 $^{^{\}dagger}$ All typical values are at V_{CC} = 5 V, T_A = 25 °C ‡ The output conditions have been chosen to produce a current that closely approximates one half of the true short-circuit output current, los-

absolute maximum ratings over operation	ng free-air temperature range (unless otherwise noted)
Supply voltage, VCC	7 V
Operating free-air temperature range:	SN54AS808B -55 °C to 125 °C SN74AS808B 0 0 °C to 70 °C
Storage temperature range	-65°C to 150°C

recommended operating conditions

	SN54AS808B		SN74AS808B			UNIT	
	MIN	NOM	MAX	MIN	NOM	MAX	UNIT
Supply voltage	4.5	5	5.5	4.5	5	5.5	V
High-level input voltage	2			2			V
Low-level input voltage			0.8			0.8	V
High-level output current			-40			-48	mA
Low-level output current			40			48	mA
Operating free-air temperature	- 55	580-	125	0		70	°C
	High-level input voltage Low-level input voltage High-level output current Low-level output current	Supply voltage 4.5 High-level input voltage 2 Low-level input voltage High-level output current Low-level output current	Supply voltage 4.5 5 High-level input voltage 2 Low-level input voltage High-level output current Low-level output current	MIN NOM MAX Supply voltage 4.5 5 5.5 High-level input voltage 2 0.8 High-level output current -40 Low-level output current 40	MIN NOM MAX MIN Supply voltage 4.5 5 5.5 4.5 High-level input voltage 2 2 2 Low-level input voltage 0.8 -40 -40 Low-level output current 40 -40 -40	MIN NOM MAX MIN NOM Supply voltage 4.5 5 5.5 4.5 5 High-level input voltage 2 2 2 2 Low-level input voltage 0.8 40 40 40 40 Low-level output current 40	MIN NOM MAX MIN NOM MAX Supply voltage 4.5 5 5.5 4.5 5 5.5 High-level input voltage 2 2 2 2 2 0.8

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER			SN54AS808B		SN	174AS8	08B	UNIT	
	TEST CONDITIONS		MIN	TYP	MAX	MIN	TYP [†]	MAX	UNIT
VIK	V _{CC} = 4.5 V,	I _I = -18 mA			- 1.2			-1.2	V
	VCC = 4.5 V to 5.5 V.	iOH = -2 mA	Vcc-2			V _{CC} -2			
Vон	VCC = 4.5 V.	IOH = -3 mA	2.4	3.2		2.4	3.2		
	V _{CC} = 4.5 V,	I _{OH} = -40 mA	2		-				V
	V _{CC} = 4.5 V,	IOH = -48 mA		200		2	1//		
VoL	VCC = 4.5 V.	I _{OL} = 40 mA		0.25	0.5				V
	V _{CC} = 4.5 V.	I _{OL} = 48 mA	2 N	1212		0.0	0.35	0.5	L.
II .	V _{CC} = 5.5 V,	V _I = 7 V		1111	0.1			0.1	mA
I _H	V _{CC} = 5.5 V,	V _I = 2.7 V		24	20			20	μΑ
1/L	V _{CC} = 5.5 V,	V _I = 0.4 V			-0.5			-0.5	mA
10‡	V _{CC} = 5.5 V,	V _O = 2.25 V	- 50		- 200	-50		- 200	mA
¹ ССН	V _{CC} = 5.5 V,	V ₁ = 4.5 V		8	13	Service Service	8	13	mA
1CCL	V _{CC} = 5.5 V.	V _I = 0 V		20	33		20	33	mA

switching characteristics (see note 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V},$ $C_L = 50 \text{ pF},$ $R_L = 500 \Omega$ $T_A = \text{MIN to MAX}$				UNI
			SN54AS808B		SN74AS808B		
			MIN	MAX	MIN	MAX	1
tpLH	—		1	6.5	1	6	ns
tPHL	A or B	4	1	6.5	1	6	1 113

NOTE 1: Load circuit and voltage waveforms are shown in Section 1.

[†] All typical values are at $V_{CC} = 5 \text{ V}$, $T_A = 25 \text{ °C}$ † The output conditions have been chosen to produce a current that closely approximates one half of the true short-circuit output current, I_{OS} .