Z8® Z8681/82 ROMless Microcomputer # Zilog # Product Specification #### April 1985 # **FEATURES** - Complete microcomputer, 24 I/O lines, and up to 64K bytes of addressable external space each for program and data memory. - 143-byte register file, including 124 general-purpose registers, 3 I/O port registers, and 16 status and control registers. - Vectored, priority interrupts for I/O, counter/timers, and UART - On-chip oscillator that accepts crystal or external clock drive. - Full-duplex UART and two programmable 8-bit counter/timers, each with a 6-bit programmable prescaler. - Register Pointer so that short, fast instructions can access any one of the nine working-register groups. - Single +5V power supply—all I/O pins TTL compatible. - Z8681/82 available in 8 MHz. Z8681 also available in 12 MHz. #### **GENERAL DESCRIPTION** The Z8681 and Z8682 are ROMless versions of the Z8 single-chip microcomputer. The Z8682 is usually more cost effective. These products differ only slightly and can be used interchangeably with proper system design to provide maximum flexibility in meeting price and delivery needs. The Z8681/82 offers all the outstanding features of the Z8 family architecture except an on-chip program ROM. Use of external memory rather than a preprogrammed ROM enables this Z8 microcomputer to be used in low volume applications or where code flexibility is required. Figure 1. Pin Functions Figure 2a. 40-pin Dual-In-Line Package (DIP), Pin Assignments 2194-001, 002 63 The Z8681/82 can provide up to 16 output address lines, thus permitting an address space of up to 64K bytes of data or program memory. Eight address outputs (AD $_0$ -AD $_7$) are provided by a multiplexed, 8-bit, Address/Data bus. The remaining 8 bits can be provided by the software configuration of Port 0 to output address bits A $_8$ -A $_{15}$. Available address space can be doubled (up to 128K bytes for the Z8681 and 124K bytes for the Z8682) by programming bit 4 of Port 3 (P3₄) to act as a data memory select output (DM). The two states of DM together with the 16 address outputs can define separate data and memory address spaces of up to 64K/62Kbytes each. There are 143 bytes of RAM located on-chip and organized as a register file of 124 general-purpose registers, 16 control and status registers, and three I/O port registers. This register file can be divided into nine groups of 16 working registers each. Configuring the register file in this manner allows the use of short format instructions; in addition, any of the individual registers can be accessed directly. The pin functions and the pin assignments of the Z8681/82 40-pin package are illustrated in Figures 1 and 2, respectively. Figure 2b. 44-pin Chip Carrier, Pin Assignments Figure 3. Functional Block Diagram # **ARCHITECTURE** Z8681/82 architecture is characterized by a flexible I/O scheme, an efficient register and address space structure and a number of ancillary features that are helpful in many applications. Microcomputer applications demand powerful I/O capabilities. The Z8681/82 fulfills this with 24 pins available for input and output. These lines are grouped into three ports of eight lines each and are configurable under software control to provide timing, status signals, serial or parallel I/O with or without handshake, and an Address bus for interfacing external memory. Three basic address spaces are available: program memory, data memory and the register file (internal). The 143-byte random-access register file is composed of 124 general-purpose registers, three I/O port registers, and 16 control and status registers. To unburden the program from coping with real-time problems such as serial data communication and counting/timing, an asynchronous receiver/transmitter (UART) and two counter/timers with a large number of user-selectable modes are offered on-chip. Hardware support for the UART is minimized because one of the on-chip timers supplies the bit rate. Figure 3 shows the Z8681/82 block diagram. # **PIN DESCRIPTION** **AS.** Address Strobe (output, active Low). Address Strobe is pulsed once at the beginning of each machine cycle. Addresses output via Port 1 for all external program or data memory transfers are valid at the trailing edge of \overline{AS} . **DS.** Data Strobe (output, active Low). Data Strobe is activated once for each external memory transfer. **P0₀-P0₇, P2₀-P2₇, P3₀-P3₇.** I/O Port Lines (input/outputs, TTL-compatible). These 24 lines are divided into three 8-bit I/O ports that can be configured under program control for I/O or external memory interface (Figure 3). **P1**₀-**P1**₇. Address/Data Port (bidirectional). Multiplexed address (A_0-A_7) and data (D_0-D_7) lines used to interface with program and data memory. **RESET** . Reset (input, active Low). RESET initializes the Z8681/82. After RESET the Z8681 is in the extended memory mode. When RESET is deactivated, program execution begins from program location 000C_H for the Z8681 and 0812_H for the Z8682. **R/W.** Read/Write (output). R/W is Low when the Z8681/82 is writing to external program or data memory. **XTAL1, XTAL2.** Crystal 1, Crystal 2 (time-base input and output). These pins connect a parallel-resonant crystal to the on-chip clock oscillator and buffer. # **SUMMARY OF Z8681 AND Z8682 DIFFERENCES** | Feature | Z8681 | Z8682 | | | | | |---|--|--|--|--|--|--| | Address of first instruction executed after Reset | 12 | 2066 | | | | | | Addressable memory space | 0-64K | 2K-64K | | | | | | Address of interrupt vectors | 0-11 | 2048-2065 | | | | | | Reset input high voltage | TTL levels * | 7.35-8.0V | | | | | | Port 0 configuration after Reset | Input, float after reset. Can be programmed as Address bits. | Output, configured as Address bit A ₈ -A ₁₅ . | | | | | | External memory timing start-up configurations | Extended Timing | Normal Timing | | | | | | Interrupt vectors | 2 byte vectors point directly to service routines. | 2 byte vectors in internal ROM point to byte Jump instructions, which point to service routines. | | | | | | Interrupt response time | 26 clocks | 36 clocks | | | | | ^{*8.0}V V_{IN} max. #### **ADDRESS SPACES** **Program Memory*.** The Z8681/82 addresses 64K/62K bytes of external program memory space (Figure 4). For the Z8681, the first 12 bytes of program memory are reserved for the interrupt vectors. These locations contain six 16-bit vectors that correspond to the six available interrupts. Program execution begins at location 000C_H after a reset. The Z8682 has six 24-bit interrupt vectors beginning at address $0800_{\rm H}$. The vectors consist of Jump Absolute instructions. After a reset, program execution begins at location $0812_{\rm H}$ for the Z8682. **Data Memory*.** The Z8681/82 can address 64K/62K bytes of external data memory. External data memory may be included with or separated from the external program memory space. $\overline{\rm DM}$, an optional I/O function that can be programmed to appear on pin P3₄, is used to distinguish between data and program memory space. Register File. The 143-byte register file includes three I/O port registers (R0, R2, R3), 124 general-purpose registers (R4-R127) and 16 control and status registers (R240-R255). These registers are assigned the address locations shown in Figure 5. Z8681/82 instructions can access registers directly or indirectly with an 8-bit address field. This also allows short 4-bit register addressing using the Register Pointer (one of the control registers). In the 4-bit mode, the register file is divided into nine working-register groups, each occupying 16 contiguous locations (Figure 5). The Register Pointer addresses the starting location of the active working-register group (Figure 6). **Stacks.** Either the internal register file or the external data memory can be used for the stack. A 16-bit Stack Pointer (R254 and R255) is used for the external stack, which can reside anywhere in data memory. An 8-bit Stack Pointer (R255) is used for the internal stack that resides within the 124 general-purpose registers (R4-R127). Figure 4. Z8681/82 Program Memory Map ^{*}This feature differs in the Z8681 and Z8682. Figure 5. The Register File Figure 6. The Register Pointer #### **SERIAL INPUT/OUTPUT** Port 3 lines P3₀ and P3₇ can be programmed as serial I/O lines for full-duplex serial asynchronous receiver/transmitter operation. The bit rate is controlled by Counter/Timer 0, with a maximum rate of 62.5K bits/second at 8 MHz or 93.75K bits/second at 12 MHz on the Z8681. The Z8681/82 automatically adds a start bit and two stop bits to transmitted data (Figure 7). Odd parity is also available as an option. Eight data bits are always transmitted, regardless of parity selection. If parity is enabled, the eighth data bit is used as the odd parity bit. An interrupt request (IRQ4) is generated on all transmitted characters. Received data must have a start bit, eight data bits, and at least one stop bit. If parity is on, bit 7 of the received data is replaced by a parity error flag. Received characters generate the IRQ3 interrupt request. 2194-006, 007, 008 67 #### **COUNTER/TIMERS** The Z8681/82 contains two 8-bit programmable counter/timers (T_0 and T_1), each driven by its own 6-bit programmable prescaler. The T_1 prescaler can be driven by internal or external clock sources; however, the T_0 prescaler is driven by the internal clock only. The 6-bit prescalers can divide the input frequency of the clock source by any number from 1 to 64. Each prescaler drives its counter, which decrements the value (1 to 256) that has been loaded into the counter. When the counter reaches the end of count, a timer interrupt request—IRQ4 (T_0) or IRQ5 (T_1) —is generated. The counters can be started, stopped, restarted to continue, or restarted from the initial value. The counters can also be programmed to stop upon reaching zero (single-pass mode) or to automatically reload the initial value and continue counting (modulo-n continuous mode). The counters, but not the prescalers, can be read any time without disturbing their value or count mode. The clock source for T_1 is user-definable; it can be either the internal microprocessor clock divided by four, or an external signal input via Port 3. The Timer Mode register configures the external timer input as an external clock, a trigger input that can be retriggerable or nonretriggerable, or as a gate input for the internal clock. The counter/timers can be programmably cascaded by connecting the T_0 output to the input of T_1 . Port 3 line P_0 also serves as a timer output (T_{OUT}) through which T_0 , T_1 or the internal clock can be output. # I/O PORTS The Z8681/82 has 24 lines available for input and output. These lines are grouped into three ports of eight lines each and are configurable as input, output or address. Under software control, the ports can be programmed to provide address outputs, timing, status signals, serial I/O, and parallel I/O with or without handshake. All ports have active pull-ups and pull-downs compatible with TTL loads. **Port 1** is a dedicated Z-BUS compatible memory interface. The operations of Port 1 are supported by the Address Strobe (\overline{AS}) and Data Strobe (\overline{DS}) lines, and by the Read/Write (R/W) and Data Memory (\overline{DM}) control lines. The low-order program and data memory addresses $(A_0 \cdot A_7)$ are output through Port 1 (Figure 8) and are multiplexed with data in/out $(D_0 \cdot D_7)$. Instruction fetch and data memory read/write operations are done through this port. Port 1 cannot be used as a register nor can a handshake mode be used with this port. Both the Z8681 and Z8682 wake up with the 8 bits of Port 1 configured as address outputs for external memory. If more than eight address lines are required with the Z8681, additional lines can be obtained by programming Port 0 bits as address bits. The least-significant four bits of Port 0 can be configured to supply address bits A_8 - A_{11} for 4K byte addressing or both nibbles of Port 0 can be configured to supply address bits A_8 - A_{15} for 64K byte addressing. Figure 8. Port 1 **Port 0*** can be programmed as a nibble I/O port, or as an address port for interfacing external memory (Figure 9). When used as an I/O port, Port 0 can be placed under handshake control. In this configuration, Port 3 lines $P3_2$ and $P3_5$ are used as the handshake controls DAV0 and RDY0. Handshake signal assignment is dictated by the I/O direction of the upper nibble $P0_4$ - $P0_7$. For external memory references, Port 0 can provide address bits A₈-A₁₁ (lower nibble) or A₈-A₁₅ (lower and upper nibbles) depending on the required address space. If the address range requires 12 bits or less, the upper nibble of Port 0 can be programmed independently as I/O while the lower nibble is used for addressing. In the Z8681*, Port 0 lines float after reset; their logic state is unknown until the execution of an initialization routine that configures Port 0. *This feature differs in the Z8681 and Z8682. Such an initialization routine must reside within the first 256 bytes of executable code and must be physically mapped into memory by forcing the Port 0 address lines to a known state (Figure 10). The proper port initialization sequence is: - Write initial address (A₈-A₁₅) of initialization routine to Port 0 address lines. - Configure Port 0 Mode register to output A₈-A₁₅ (or A₈-A₁₁). To permit the use of slow memory, an automatic wait mode of two oscillator clock cycles is configured for the bus timing of the Z8681 after each reset. The initialization routine could include reconfiguration to eliminate this extended timing mode. The following example illustrates the manner in which an initialization routine can be mapped in a Z8681 system with 4K of memory. Example. In Figure 10, the initialization routine is mapped to the first 256 bytes of program memory. Pull-down resistors maintain the address lines at a logic 0 level when these lines are floating. The leakage current caused by fanout must be taken into consideration when selecting the value of the pulldown resistors. The resistor value must be large enough to allow the Port 0 output driver to pull the line to a logic 1. Generally, pulldown resistors are incompatible with TTL loads. If Port 0 drives into TTL input loads ($l_{LOW} = 1.6$ mA) the external resistors should be tied to V_{CC} and the initialization routine put in address space FF00H-FFFFH. In the Z8682 * , Port 0 lines are configured as address lines A_8 - A_{15} after a Reset. If one or both nibbles are needed for I/O operation, they must be configured by writing to the Port 0 Mode register. The Z8682 is in the fast memory timing mode after Reset, so the initialization routine must be in fast memory. Figure 9. Port 0 Figure 10. Port 0 Address Lines Tied to Logic 0 **Port 2** bits can be programmed independently as input or output (Figure 11). This port is always available for I/O operations. In addition, Port 2 can be configured to provide open-drain outputs. Like Port 0, Port 2 may also be placed under handshake control. In this configuration, Port 3 lines $P3_1$ and $P3_6$ are used as the handshake controls lines DAV_2 and RDY_2 . The handshake signal assignment for Port 3 lines $P3_1$ and $P3_6$ is dictated by the direction (input or output) assigned to bit 7 of Port 2. **Port 3** lines can be configured as I/O or control lines (Figure 12). In either case, the direction of the eight lines is fixed as four input (P3₀-P3₃) and four output (P3₄-P3₇). For serial I/O, lines P3₀ and P3₇ are programmed as serial in and serial out, respectively. Port 3 can also provide the following control functions: handshake for Ports 0 and 2 (\overline{DAV} and RDY); four external interrupt request signals (IRQ0-IRQ3); timer input and output signals (T_{IN} and T_{OUT}) and Data Memory Select (\overline{DM}). Figure 11. Port 2 Figure 12. Port 3 2194-010, 011, 012, 013 69 ^{*}This feature differs in the Z8681 and Z8682 #### INTERRUPTS* The Z8681/82 allows six different interrupts from eight sources: the four Port 3 lines P3₀-P3₃, Serial In, Serial Out, and the two counter/timers. These interrupts are both maskable and prioritized. The Interrupt Mask register globally or individually enables or disables the six interrupt requests. When more than one interrupt is pending, priorities are resolved by a programmable priority encoder that is controlled by the Interrupt Priority register. All Z8681 and Z8682 interrupts are vectored through locations in program memory. When an interrupt request is granted, an interrupt machine cycle is entered. This disables all subsequent interrupts, saves the Program Counter and status flags, and accesses the program memory vector location reserved for that interrupt. In the Z8681, this memory location and the next byte contain the 16-bit address of the interrupt service routine for that particular interrupt request. The Z8681 takes 26 system clock cycles to enter an interrupt subroutine. The Z8682 has a small internal ROM that contains six 2-byte interrupt vectors pointing to addresses 2048-2065, where 3-byte jump absolute instructions are located (Figure 4 and Table 1). These jump instructions each contain a 1-byte opcode and a 2-byte starting address for the interrupt service routine. The Z8682 takes 36 system clock cycles to enter an interrupt subroutine. Table 1. Z8682 Interrupt Processing | Hex
Address | Contains Jump Instruction and
Subroutine Address For | |----------------|---| | 800-802 | IRQ0 | | 803-805 | IRQ1 | | 806-808 | IRQ2 | | 809-80B | IRQ3 | | 80C-80E | IRQ4 | | 80F-811 | IRQ5 | Polled interrupt systems are also supported. To accommodate a polled structure, any or all of the interrupt inputs can be masked and the Interrupt Request register polled to determine which of the interrupt requests needs service. #### CLOCK The on-chip oscillator has a high-gain, parallel-resonant amplifier for connection to a crystal or to any suitable external clock source (XTAL1 = Input, XTAL2 = Output). The crystal source is connected across XTAL1 and XTAL2, using the recommended capacitance ($C_L=15$ pf maximum) from each pin to ground. The specifications for the crystal are as follows: - AT cut, parallel-resonant - Fundamental type - Series resistance, R_s ≤ 100Ω - For Z8681/Z8682, 8 MHz maximum - For Z8681-12, 12 MHz maximum # Z8681/Z8682 INTERCHANGEABILITY Although the Z8681 and Z8682 have minor differences, a system can be designed for compatibility with both ROMless versions. To achieve interchangeability, the design must take into account the special requirements of each device in the external interface, initialization, and memory mapping. **External Interface.** The Z8682 requires a 7.5V positive logic level on the RESET pin for at least 6 clock periods immediately following reset, as shown in Figure 13. The Z8681 requires a 3.8V or higher positive logic level, but is compatible with the Z8682 RESET waveform. Figure 14 shows a simple circuit for generating the 7.5V level. Figure 13. Z8682 RESET Pin Input Waveform Figure 14. RESET Circuit 2194-014, 015 **Initialization.** The Z8681 wakes up after reset with Port 0 configured as an input, which means Port 0 lines are floating in a high-impedance state. Because of this pullup or pulldown, resistors must be attached to Port 0 lines to force them to a valid logic level until Port 0 is configured as an address port. Port 0 initialization is discussed in the section on ports. An example of an initialization routine for Z8681/Z8682 compatibility is shown in Table 2. Only the Z8681 need execute this program. **Table 2. Initialization Routine** | Address | Opcodes | instruction | Comments | |---------|----------|---------------------|---| | 000C | E6 00 00 | LD PO #%00 | Set A ₈ -A ₁₅ to 0. | | 000F | E6 F8 96 | LD P01M #%96 | Configure Port 0 as A ₈ -A ₁₅ . Eliminate extended memory timing. | | 0012 | 8D 08 12 | JP START
ADDRESS | Execute application program. | Figure 15. Z8681/82 Logical Program Memory Mapping **Memory Mapping.** The Z8681 and Z8682 lower memory boundaries are located at 0 and 2048, respectively. A single program ROM can be used with either product if the logical program memory map shown in Figure 15 is followed. The Z8681 vectors and initialization routine must be starting at address 0 and the Z8682 3-byte vectors (jump instructions) must be at address 2048 and higher. Addresses in the range 21-2047 are not used. Figure 16 shows practical schemes for implementing this memory map using 4K and 2K ROMs. # a. Logical to Physical Memory Mapping for 4K ROM b. Logical to Physical Memory Mapping for 2K ROM Figure 16. Practical Schemes for Implementing Z8681 and Z8682 Compatible Memory Map # INSTRUCTION SET NOTATION Addressing Modes. The following notation is used to describe the addressing modes and instruction operations as shown in the instruction summary. | IRR | Indirect register pair or indirect working-register | |-----|---| | | pair address | | irr | Indirect working-register pair only | | X | Indexed address | | DA | Direct address | RA Relative address IM **Immediate** R Register or working-register address Working-register address only Indirect-register or indirect working-register IR address ir Indirect working-register address only RR Register pair or working register pair address Symbols. The following symbols are used in describing the instruction set. dst Destination location or contents src Source location or contents CC Condition code (see list) Indirect address prefix @ SP Stack pointer (control registers 254-255) PC Program counter **FLAGS** Flag register (control register 252) RP Register pointer (control register 253) **IMR** Interrupt mask register (control register 251) Assignment of a value is indicated by the symbol "←". For example, dst ← dst + src indicates that the source data is added to the destination data and the result is stored in the destination location. The notation "addr(n)" is used to refer to bit "n" of a given location. For example, dst (7) refers to bit 7 of the destination operand. Flags. Control Register R252 contains the following six flags: C Carry flag Z Zero flag s Sign flag ٧ Overflow flag D Decimal-adjust flag н Half-carry flag Affected flags are indicated by: Cleared to zero Set to one Set or cleared according to operation Unaffected X Undefined # CONDITION CODES | Value | Mnemonic | Meaning | Flags Set | | |-------|----------|--------------------------------|-----------------------|--| | 1000 | | Always true | _ | | | 0111 | С | Carry | C = 1 | | | 1111 | NC | No carry | C = 0 | | | 0110 | Z | Zero | Z = 1 | | | 1110 | NZ | Not zero | Z = 0 | | | 1101 | PL | Plus | S = 0 | | | 0101 | MI | Minus | S = 1 | | | 0100 | OV | Overflow | V = 1 | | | 1100 | NOV | No overflow | V = 0 | | | 0110 | EQ | Equal | Z = 1 | | | 1110 | NE | Not equal | Z = 0 | | | 1001 | GE | Greater than or equal | (S XOR V) = 0 | | | 0001 | LT | Less than | (S XOR V) = 1 | | | 1010 | GT | Greater than | [Z OR (S XOR V)] = 0 | | | 0010 | LE | Less than or equal | [Z OR (S XOR V)] = 1 | | | 1111 | UGE | Unsigned greater than or equal | C = 0 | | | 0111 | ULT | Unsigned less than | C = 1 | | | 1011 | UGT | Unsigned greater than | (C = 0 AND Z = 0) = 0 | | | 0011 | ULE | Unsigned less than or equal | (C OR Z) = 1 | | | 0000 | | Never true | _ | | CCF, DI, EI, IRET, NOP, RCF, RET, SCF INC r OPC dst OPC Figure 17. Instruction Formats # INSTRUCTION SUMMARY | Instruction | Addr | Mode | Opcode | F | lag | s A | ffe | cte | ed | | Addr | Mode | | FI | ag | js A | Aff | ecte | |---|-----------|------|---------------|---|-----|-----|-----|-----|----|--|----------|------|-----------------|-----|----|------|-----|------| | and Operation | dst | src | Byte
(Hex) | С | Z | s | ٧ | D | н | Instruction
and Operation | dst | src | Byte
(Hex) | С | z | s | | D | | ADC dst,src
dst ← dst + src + C | (Not | e 1) | 1 🗆 | * | * | * | * | 0 | * | DEC dst
dst ← dst – 1 | R
IR | | 00 | _ | * | * | * | _ | | ADD dst,src
dst ← dst + src | (Not | e 1) | 0□ | * | * | * | * | 0 | * | DECW dst dst ← dst – 1 | RR
IR | | 80
81 | _ | * | * | * | _ | | AND dst,src
dst ← dst AND src | (Not | e 1) | 5□ | _ | * | * | 0 | | _ | DI
IMR (7) ← 0 | | | 8F | | | _ | _ | | | CALL dst
SP ← SP <i>-</i> 2
@SP ← PC; PC ← dst | DA
IRR | | D6
D4 | | = | _ | _ | _ | _ | DJNZ r,dst
r ← r − 1
if r ≠ 0 | RA | | rA
r = 0 - F | | | _ | _ | _ | | CCF
C ← NOT C | | | EF | * | _ | _ | _ | | _ | PC ← PC + dst
Range: +127, -128 | | | | | | | | | | CLR dst
dst ← 0 | R
IR | | B0
B1 | _ | _ | | _ | _ | _ | EI
IMR (7) ← 1 | | | 9F | _ | _ | _ | _ | _ | | COM dst
dst ← NOT dst | R
IR | | 60
61 | _ | * | * | 0 | _ | = | INC dst
dst ← dst + 1 | r | | rE
r = 0 - F | | * | * | * | | | CP dst,src
dst - src | (Note | e 1) | Α□ | * | * | * | * | _ | _ | | R
IR | | 20
21 | | | | | | | DA dst
dst ← DA dst | R
IR | | 40
41 | * | * | * | X | _ | _ | INCW dst
dst ← dst + 1 | RR
IR | | A0
A1 | - • | | * | * | | 74 2194-018, 019 # **INSTRUCTION SUMMARY** (Continued) | Instruction | Addr | Mode | Opcode
Byte | Flags Affected | | | | | | | |--|--------|---------|----------------|----------------|----|---|---|---|---|--| | Instruction
and Operation | dst | src | (Hex) | С | z | s | ٧ | D | н | | | IRET | | | BF | * | * | * | * | * | * | | | FLAGS ← @SP; SP ←
PC ← @SP; SP ← SF | | | ← 1 | | | | | | | | | JP cc,dst | DA | | cD | _ | _ | _ | | ~ | _ | | | if cc is true
PC ← dst | IRR | | c = 0 - F | | | | | | | | | JR cc,dst | RA | | сВ | _ | | | _ | _ | | | | if cc is true,
PC ← PC + dst
Range: +127, -128 | | | c = 0 - F | | | | | | | | | LD dst,src | | lm | rC | _ | _ | _ | _ | _ | _ | | | dst ← src | r | R | r8 | | | | | | | | | | R | r | r9 | | | | | | | | | | | | r = 0 - F | | | | | | | | | | r | X | C7
D7 | | | | | | | | | | X
r | r
Ir | E3 | | | | | | | | | | lr | r | F3 | | | | | | | | | | R | R | E4 | | | | | | | | | | R | IR | E5 | | | | | | | | | | R | IM | E6 | | | | | | | | | | IR | IM | E7 | | | | | | | | | | IR | R | F5 | | _ | | | | | | | LDC dst,src | r | Irr | C2 | _ | _ | | _ | _ | - | | | dst ← src | Irr | r | D2 | | | | | | | | | LDCI dst,src | lr | lrr | C3 | _ | | _ | _ | _ | _ | | | dst ← src | Irr | lr | D3 | | | | | | | | | r ← r + 1; rr ← rr + 1 | 1 | | | | | | | | | | | LDE dst,src | r | Irr | 82 | _ | | _ | _ | _ | _ | | | dst ← src | Irr | r | 92 | | | | | | | | | LDEI dst,src | lr | Irr | 83 | | _ | | _ | | _ | | | dst ← src | Irr | lr | 93 | | | | | | | | | $r \leftarrow r + 1$; $rr \leftarrow rr + 1$ | 1 | | | | | | | | | | | NOP | | | FF . | _ | _ | _ | _ | _ | _ | | | OR dst,src
dst ← dst OR src | (No | ote 1) | 4□ | _ | * | * | 0 | _ | _ | | | POP dst | R | | 50 | | _ | _ | _ | - | _ | | | dst ← @SP;
SP ← SP + 1 | IR | | 51 | | | | | | | | | PUSH src
SP ← SP - 1; @SP | ← src | R
IR | 70
71 | _ | _ | _ | | | _ | | | RCF C ← 0 | | *** | CF | 0 | _ | _ | _ | _ | _ | | | RET
PC ← @SP; SP ← S | P + 2 | | AF | _ | | _ | _ | _ | _ | | | PI det | T R | | 90 | * | ٠. | - | _ | | _ | | | RL OSI | ⊒–lR | | 91 | * | * | * | * | | | | | | Addr | Mode | Opcode | F | lag | s A | ffe | cte | ed | |------------------------------------|-----------|-------|---------------|---|-----|-----|-----|-----|----| | Instruction
and Operation | dst | src | Byte
(Hex) | С | z | s | ٧ | D | н | | RLC dst C 7 0 | P R | | 10
11 | * | * | * | * | - | | | RR dst -[-] -[7 0 | P R
IR | | E0
E1 | * | * | * | * | | _ | | RRC dst | P R | | C0
C1 | * | * | * | * | _ | | | SBC dst,src
dst ← dst ← src ← C | (Not | te 1) | 3□ | * | * | * | * | 1 | * | | SCF
C ← 1 | | | DF | 1 | _ | _ | _ | _ | _ | | SRA dst _c _7 | P IR | | D0
D1 | * | * | * | 0 | _ | - | | SRP src
RP ← src | | lm | 31 | | | - | _ | - | _ | | SUB dst,src
dst ← dst ← src | (No | te 1) | 2□ | * | * | * | * | 1 | * | | SWAP dst 7 43 | R
IR | | F0
F1 | Х | * | * | X | _ | _ | | TCM dst,src
(NOT dst) AND src | (No | te 1) | 6□ | _ | * | * | 0 | _ | _ | | TM dst,src
dst AND src | (No | te 1) | 7□ | | * | * | 0 | | | | XOR dst,src
dst ← dst XOR src | (No | te 1) | В□ | _ | * | * | 0 | _ | _ | NOTE: These instructions have an identical set of addressing modes, which are encoded for brevity. The first opcode nibble is found in the instruction set table above. The second nibble is expressed symbolically by a \square in this table, and its value is found in the following table to the left of the applicable addressing mode pair. For example, the opcode of an ADC instruction using the addressing modes r (destination) and Ir (source) is 13. | Lower | |---------------| | Opcode Nibble | | 2 | | 3 | | 4 | | 5 | | 6 | | 7 | | | Figure 18. Control Registers 76 0 PARITY OFF 1 PARITY ON Figure 18. Control Registers (Continued) RESERVED (MUST BE 0) 1 ENABLES INTERRUPTS # **Z86L81/85 OPCODE MAP** | | | | | | | | | Lower N | ibble (Hex |) | | | | | | | |-------------------------|--------------------------------------|---|--|--|--|---|--|---|--|--|---|-------------------------------|--|-------------------------------|-------------------------|-------------------| | | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | A | B | С | D | E | F | | 0 | 6,5
DEC
R ₁ | 6.5
DEC
IR ₁ | 6.5
ADD
r _{1.} r ₂ | 6.5
ADD
r ₁ .lr ₂ | 10,5
ADD
R ₂ ,R ₁ | 10.5
ADD
IR ₂ ,R ₁ | 10,5
ADD
R ₁ ,IM | 10.5
ADD
IR ₁ .IM | 6,5
LD
r ₁ ,R ₂ | 6,5
LD
r ₂ ,R ₁ | 12/10,5
DJNZ
r ₁ .RA | 12/10,0
JR
cc,RA | 6.5
LD
r ₁ .IM | 12/10.0
JP
cc.DA | 6.5
INC
r1 | | | 1 | 6,5
RLC
R ₁ | 6.5
RLC
IR ₁ | 6.5
ADC
r ₁ ,r ₂ | 6,5
ADC
r ₁ ,lr ₂ | 10.5
ADC
R ₂ ,R ₁ | 10.5
ADC
IR ₂ .R ₁ | 10,5
ADC
R ₁ ,IM | 10,5
ADC
IR ₁ ,IM | | | | | | | | | | 2 | 6.5
INC
R ₁ | 6,5
INC
IR ₁ | 6.5
SUB
r1.r2 | 6.5
SUB
r ₁ .ir ₂ | 10,5
SUB
R ₂ ,R ₁ | 10.5
SUB
IR ₂ ,R ₁ | 10,5
SUB
R ₁ ,IM | 10,5
SUB
IR ₁ ,IM | | | | | | | | | | 3 | 8,0
JP
IRR ₁ | 6.1
SRP
IM | 6,5
SBC
r ₁ ,r ₂ | 6,5
SBC
r ₁ ,ir ₂ | 10,5
SBC
R ₂ ,R ₁ | 10.5
SBC
IR ₂ ,R ₁ | 10,5
SBC
R ₁ ,IM | 10,5
SBC
IR ₁ ,IM | | | | | | | | | | 4 | 8.5
DA
R ₁ | 8.5
DA
IR ₁ | 6,5
OR
r ₁ .r ₂ | 6.5
OR
r ₁ ,lr ₂ | 10,5
OR
R ₂ ,R ₁ | 10,5
OR
IR ₂ ,R ₁ | 10,5
OR
R ₁ ,IM | 10,5
OR
IR ₁ ,IM | | | | | | | | | | 5 | 10,5
POP
R ₁ | 10,5
POP
IR ₁ | 6.5
AND
r _{1.} r ₂ | 6,5
AND
r ₁ ,lr ₂ | 10,5
AND
R ₂ ,R ₁ | 10,5
AND
IR ₂ ,R ₁ | 10,5
AND
R ₁ ,IM | 10,5
AND
IR ₁ ,IM | | | | | | | | | | 6 | 6.5
COM
R ₁ | 6,5
COM
IR ₁ | 6.5
TCM
r ₁ ,r ₂ | 6,5
TCM
r ₁ ,lr ₂ | 10.5
TCM
R ₂ ,R ₁ | 10,5
TCM
IR ₂ ,R ₁ | 10,5
TCM
R ₁ ,IM | 10,5
TCM
IR ₁ .IM | | | | | | | | | | Upper Nibble (Hex)
8 | 10/12.1
PUSH
R ₂ | 12/14,1
PUSH
IR ₂ | 6,5
TM
r ₁ ,r ₂ | 6,5
TM
r ₁ .lr ₂ | 10,5
TM
R ₂ ,R ₁ | 10,5
TM
IR ₂ ,R ₁ | 10,5
TM
R ₁ ,IM | 10.5
TM
IR ₁ ,IM | | | | | | | | | | Upper Nil | 10.5
DECW
RR ₁ | 10,5
DECW
IR ₁ | 12.0
LDE
r ₁ .irr ₂ | 18.0
LDEI
Ir ₁ .Irr ₂ | | | | | | | | | | | | 6,1
Dt | | 9 | 6.5
RL
R ₁ | 6,5
RL
IR ₁ | 12,0
LDE
r ₂ ,lrr ₁ | 18,0
LDEI
Ir ₂ ,Irr ₁ | | | | | | | | | | | | 6,1
Et | | A | 10,5
INCW
RR ₁ | 10.5
INCW
IR ₁ | 6.5
CP
r ₁ ,r ₂ | 6,5
CP
r ₁ .lr ₂ | 10,5
CP
R ₂ ,R ₁ | 10.5
CP
IR ₂ .R ₁ | 10,5
CP
R ₁ ,IM | 10.5
CP
IR ₁ ,IM | | | | | | | | 14.0
RET | | В | 6.5
CLR
R ₁ | 6.5
CLR
IR ₁ | 6,5
XOR
r ₁ ,r ₂ | 6,5
XOR
r ₁ .lr ₂ | 10,5
XOR
R ₂ ,R ₁ | 10,5
XOR
IR ₂ .R ₁ | 10.5
XOR
R ₁ ,IM | 10,5
XOR
IR ₁ ,IM | | | | | | | | 16,0
IRET | | С | 6.5
RRC
R ₁ | 6,5
RRC
IR ₁ | 12,0
LDC
r ₁ ,lrr ₂ | 18.0
LDCI
Ir ₁ .Irr ₂ | | | | 10,5
LD
r ₁ ,x,R ₂ | | | | | | | | 6,5
RCF | | D | 6.5
SRA
R ₁ | 6,5
SRA
IR ₁ | 12.0
LDC
r ₂ ,lrr ₁ | 18,0
LDCI
Ir ₂ ,Irr ₁ | 20.0
CALL*
IRR ₁ | | 20.0
CALL
DA | 10.5
LD
r ₂ ,x,R ₁ | | | | | | | | 6,5
SCF | | E | 6.5
RR
R ₁ | 6.5
RR
IR ₁ | | 6.5
LD
r ₁ .IR ₂ | 10,5
LD
R ₂ ,R ₁ | 10.5
LD
IR ₂ ,R ₁ | 10,5
LD
R ₁ .IM | 10.5
LD
IR ₁ .IM | | | | | | | | 6,5
CCF | | F | 8.5
SWAP
R ₁ | 8,5
SWAP
IR ₁ | | 6.5
LD
Ir ₁ .r ₂ | | 10.5
LD
R ₂ ,IR ₁ | | | | | | | | | | 6,0
NOP | | | | | | | | | | | | | ~ | | | | | | | | | 2 | ! | | | 3 | | | | | 2 | | | 3 | 1 | | | | | | | LOV
OPC
NIB | ODE | | В | ytes per i | nstruction | • | | | | | | | | | | EXI | ECUTION
CYCLES | | | PIPELINE
CYCLES | | | | | Legend:
R = 8-bit a | | | | | | | | | UPPE
OPCOD
NIBBL | E → | 10,
R ₂ , | - | MNEMON | IIC | | | | r = 4-bit as
R_1 or $r_1 = R_2$ or $r_2 = R_3$ | Dst addres
Src addres | | | | | | | | | FIRST | # | * | SECOND | | | | | Sequence
Opcode, F | | nd, Secon | id Operand | I | | ^{*2-}byte instruction: fetch cycle appears as a 3-byte instruction FIRST 78 2194-021 NOTE: The blank areas are not defined. SECOND OPERAND # **ABSOLUTE MAXIMUM RATINGS** | Voltages on all pins except RESET | Stresses | |---------------------------------------|------------------------| | with respect to GND | cause pe | | Operating Ambient | operation
operation | | Temperature See Ordering Information | absolute | | Storage Temperature 65 °C to + 150 °C | device re | Stresses greater than those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; operation of the device at any condition above those indicated in the operational sections of these specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. # STANDARD TEST CONDITIONS The DC characteristics listed below apply for the following standard test conditions, unless otherwise noted. All voltages are referenced to GND. Positive current flows into the referenced pin. Standard conditions are as follows: - +4.75V \leq V_{CC} \leq +5.25V - GND = 0V Figure 19. Test Load 1 - $0 \,^{\circ}\text{C} \leq T_A \leq +70 \,^{\circ}\text{C}$ for S (Standard temperature) - -40°C TA +85°C for E (Extended temperature) The Ordering Information section lists package temperature ranges and product numbers. Refer to the Literature List for additional documentation. Package drawings are in the Package Information section. Figure 20. External Clock Interface Circuit # **DC CHARACTERISTICS** | Symbol | Parameter | Min | Max | Unit | Condition | |-----------------|--------------------------------|------|-----|------|------------------------------------| | V _{CH} | Clock Input High Voltage | 3.8 | Vcc | ٧ | Driven by External Clock Generator | | V _{CL} | Clock Input Low Voltage | -0.3 | 0.8 | ٧ | Driven by External Clock Generator | | V _{IH} | Input High Voltage | 2.0 | Vcc | V | | | V_{IL} | Input Low Voltage | -0.3 | 0.8 | V | | | V _{RH} | Reset Input High Voltage | 3.8 | Vcc | V | See Note | | V _{RL} | Reset Input Low Voltage | -0.3 | 0.8 | ٧ | | | V _{OH} | Output High Voltage | 2.4 | | V | l _{OH} = -250 μA | | V _{OL} | Output Low Voltage | | 0.4 | V | $I_{OL} = +2.0 \text{mA}$ | | lլլ_ | Input Leakage | -10 | 10 | μΑ | $0V \le V_{ N} \le +5.25V$ | | l _{OL} | Output Leakage | - 10 | 10 | μΑ | $0V \le V_{1N} \le +5.25V$ | | l _{IR} | Reset Input Current | | 50 | μΑ | $V_{CC} = +5.25V, V_{RL} = 0V$ | | lcc | V _{CC} Supply Current | | 180 | mA | | ^{*}The Reset line (pin 6) is used to place the Z8682 in external memory mode. This is accomplished as shown in Figure 13. Figure 21. External I/O or Memory Read/Write Timing # **AC CHARACTERISTICS** External I/O or Memory Read and Write Timing | Number | Symbol | Parameter | Z8681/82
8 MHz | | Z8681
12 MHz | | | |--------|-----------|---|-------------------|-----|-----------------|-----|---------| | | | | Min | Max | Min | Max | Notes*† | | 1 | TdA(AS) | Address Valid to AS ↑ Delay | 50 | | 35 | | 2,3 | | 2 | TdAS(A) | ĀS ↑ to Address Float Delay | 70 | | 45 | | 2,3 | | 3 | TdAS(DR) | AS ↑ to Read Data Required Valid | | 360 | | 220 | 1,2,3 | | 4 | TwAS | AS Low Width | 80 | | 55 | | 2,3 | | 5 | TdAz(DS) | Address Float to DS ↓ | 0 | | 0 | | | | 6 | Twdsr | DS (Read) Low Width | 250 | | 185 | | 1,2,3 | | 7 | TwDSW | DS (Write) Low Width | 160 | | 110 | | 1,2,3 | | 8 | TdDSR(DR) | DS ↓ to Read Data Required Valid | | 200 | | 130 | 1,2,3 | | 9 | ThDR(DS) | Read Data to DS † Hold Time | 0 | | 0 | | | | 10 | TdDS(A) | DS ↑ to Address Active Delay | 70 | | 45 | | 2,3 | | 11 | TdDS(AS) | DS ↑ to AS ↓ Delay | 70 | | 55 | | 2,3 | | 12 | TdR/W(AS) | R/W Valid to AS↑ Delay | 50 | | 30 | | 2,3 | | 13 | TdDS(R/W) | DS ↑ to R/W Not Valid | 60 | | 35 | | 2,3 | | 14 | TdDW(DSW) | Write Data Valid to DS (Write) ↓ Delay | 50 | | 35 | | 2,3 | | 15 | TdDS(DW) | DS f to Write Data Not Valid Delay | 70 | | 45 | | 2,3 | | 16 | TdA(DR) | Address Valid to Read Data Required Valid | | 410 | | 255 | 1,2,3 | | 17 | TdAS(DS) | ĀŠ ↑ to DS ↓ Delay | 80 | | 55 | | 2,3 | # NOTES: 80 2194-024 ^{1.} When using extended memory timing add 2 TpC. ^{2.} Timing numbers given are for minimum TpC. ^{3.} See clock cycle time dependent characteristics table. ^{*} All units in nanoseconds (ns). [†] Test Load 1 All timing references use 2.0V for a logic "1" and 0.8V for a logic "0". Figure 22. Additional Timing # **AC CHARACTERISTICS** Additional Timing Table | Number | Symbol | Parameter | Z8681/82
8 MHz | | Z8681
12 MHz | | | |--------|-------------|-----------------------------------|-------------------|------|-----------------|---|--------| | | | | Min | Max | Min | Max | Notes* | | 1 | ТрС | Input Clock Period | 125 | 1000 | 83 | 1000 | 1 | | 2 | TrC,TfC | Clock Input Rise and Fall Times | | 25 | | 15 | 1 | | 3 | TwC | Input Clock Width | 37 | | 70 | | 1 | | 4 | TwTinL | Timer Input Low Width | 100 | | 70 | | 2 | | 5 | TwTinH | Timer Input High Width | 3ТрС | | 3ТрС | | 2 | | 6 | TpTin | Timer Input Period | 8TpC | | 8TpC | .,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | 2 | | 7 | TrTin,TfTin | Timer Input Rise and Fall Times | | 100 | | 100 | 2 | | 8 | TwlL | Interrupt Request Input Low Time | 100 | | 70 | | 2,3 | | 9 | TwiH | Interrupt Request Input High Time | ЗТрС | | ЗТрС | | 2,3 | # NOTES: ^{1.} Clock timing references use 3.8V for a logic "1" and 0.8V for a logic "0". ^{2.} Timing references use 2.0V for a logic "1" and 0.8V for a logic "0". ^{3.} Interrupt request via Port 3. ^{*} Units in nanoseconds (ns). Figure 23a. Input Handshake Timing Figure 23b. Output Handshake Timing # **AC CHARACTERISTICS** Handshake Timing | Number | | | Z8681/82 | | Z8681 | | | |--------|--------------|-----------------------------|----------|-----|-------|-----|--------| | | Symbol | Parameter | Min | Max | Min | Max | Notes† | | 1 | TsDI(DAV) | Data In Setup Time | 0 | | 0 | | | | 2 | ThDI(DAV) | Data In Hold Time | 230 | | 160 | | | | 3 | TwDAV | Data Available Width | 175 | | 120 | | | | 4 | TdDAVIf(RDY) | DAV ↓ Input to RDY ↓ Delay | | 175 | | 120 | 1,2 | | 5 | TdDAVOf(RDY) | DAV ↓ Output to RDY ↓ Delay | 0 | | 0 | | 1,3 | | 6 | TdDAVIr(RDY) | DAV † Input to RDY † Delay | | 175 | 77.0 | 120 | 1,2 | | 7 | TdDAVOr(RDY) | DAV † Output to RDY † Delay | 0 | | 0 | | 1,3 | | 8 | TdDO(DAV) | Data Out to DAV ↓ Delay | 50 | | 30 | | 1 | | 9 | TdRDY(DAV) | Rdy Input to DAV ↑ Delay | 0 | 200 | 0 | 140 | 1 | #### NOTES: ^{1.} Test load 1 ^{2.} Input handshake ^{3.} Output handshake [†] All timing references use 2.0V for a logic "1" and 0.8V for a logic "0". * Units in nanoseconds (ns). # CLOCK CYCLE TIME-DEPENDENT CHARACTERISTICS | Number | Symbol | Z8681/82
8 MHz
Equation | Z8681
12 MHz
Equation | |--------|-----------|-------------------------------|-----------------------------| | 1 | TdA(AS) | TpC-75 | TpC-50 | | 2 | TdAS(A) | TpC-55 | TpC-40 | | 3 | TdAS(DR) | 4TpC-140 * | 4TpC-110* | | 4 | TwAS | TpC-45 | TpC-30 | | 6 | TwD\$R | 3TpC-125* | 3TpC-65 * | | 7 | TwDSW | 2TpC-90* | 2TpC-55* | | 8 | TdDSR(DR) | 3TpC-175 * | 3TpC-120* | | 10 | Td(DS)A | TpC-55 | TpC-40 | | 11 | TdDS(AS) | TpC-55 | TpC-30 | | 12 | TdR/W(AS) | TpC-75 | TpC-55 | | 13 | TdDS(R/W) | TpC-65 | TpC-50 | | 14 | TdDW(DSW) | TpC-75 | TpC-50 | | 15 | TdDS(DW) | TpC-55 | TpC-40 | | 16 | TdA(DR) | 5TpC-215* | 5TpC-160 * | | 17 | TdAS(DS) | TpC-45 | TpC-30 | ^{*} Add 2TpC when using extended memory timing # **ORDERING INFORMATION** # Z8 ROMIess MCU, 8.0 MHz 40-pin DIP 44-pin PCC Z8681 PS Z8681 VS† Z8681 CS Z8681 PE Z8681 CE Z8681 CM* Z8 ROMIess MCU, 12.0 MHz 40-pin DIP 44-pin PCC Z8681-12 PS Z8681-12 VS† Z8681-12 CS # **Z8 ROMIess MCU, 8.0 MHz** 40-pin DIP Z8682 PS Z8682 CS Z8682 PE Z8682 CE #### Codes First letter is for package; second letter is for temperature. C = Ceramic DIP P = Plastic DIP L = Ceramic LCC V = Plastic PCC = Protopack = Low Profile Protopack DIP = Dual-In-Line Package LCC = Leadless Chip Carrier PCC = Plastic Chip Carrier (Leaded) **TEMPERATURE** S = 0°C to +70°C E = -40 °C to +85 °C $M^* = -55$ °C to +125°C FLOW B = 883 Class B Example: PS is a plastic DIP, 0°C to +70°C. [†]Available soon. ^{*}For Military Orders, contact your local Zilog Sales Office for Military Electrical Specifications.